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ABSTRACT

A light field captures a dense set of rays as scene descriptions in place of ge-

ometry. Recent advances on computational imaging have enabled novel and efficient

light field acquisition devices. By mounting an microlense/lenslet array in front of an

ultra-high resolution sensor (e.g., 11 megapixels), Lytro and Raytrix cameras are able

to capture a light field in a single shot. However, the effective resolution is reduced by

the number of microlenses. For example, the resulting image at a desired focal plane

has only 1080×1080 pixels or roughly 1.2 megapixels, which is too low for photographic

uses and computer vision tasks. Another drawback is low angular resolution on the

captured light fields, usually less than 10 × 10 for each spatial sample, resulting in

aliasing artifacts on the rendered image. Finally, the huge amount of the data in each

captured light field (larger than 20 MB per frame) prohibits video capturing.

This dissertation focuses on exploring new image processing algorithms and

camera designs to improve the spatial, angular, and temporal resolution of light field

imaging.

Spatial Resolution: We develop a simple but effective technique for improving

the image resolution of the plenoptic camera by maneuvering the demosaicing process.

We first show that the traditional solution by demosaicing each individual microlense

image and then blending them for view synthesis is suboptimal. We instead propose

to demosaic the synthesized view at the rendering stage to obtain a higher resolution

color result. We show that my solution can achieve visible resolution enhancement on

dynamic refocusing and depth-assisted deep focus rendering.

Angular Resolution: We explore geometric structures of 3D lines in ray space

for improving light field triangulation. The triangulation problem aims to fill in the

ray space with continuous and non-overlapping simplices anchored at sampled points
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(rays). Such a triangulation provides a piecewise-linear interpolant useful for light

field super-resolution. We show that the light field space is largely bilinear due to

3D line segments in the scene, and direct triangulation of these bilinear subspaces

leads to large errors. We instead present a simple but effective algorithm to first map

bilinear subspaces to line and surface constraints and then apply Constrained Delaunay

Triangulation (CDT).

The depth of each sample is required as a guidance to correctly conduct light

field superresolution. To improve the current depth estimation algorithms, we propose

two solutions: 1) We analyze the behavior of pixels under severe occlusion and show

that it is possible to distinguish different depth layers based on statistics. Instead, we

propose an iterative process to resolve occlusion. 2) We explore geometric structures

of 3D lines in 4D ray space for improving light field stereo matching. We add the

bilinear property of 3D lines as an additional constraint for the multi-view graph-cut

framework.

Spatial-Angular Resolution: We present a unified framework to enhance spatial-

angular resolution based on multiple light fields. Our solution first estimates the regis-

tration among the captured light fields, and then conducts projective warping to find

the common subspaces among the light fields. Finally, our solution maps the inconsis-

tency in the subspaces to the 4D graph-cut framework and finds the best seam to quilt

those light fields.

Temporal Resolution: We construct a hybrid-resolution stereo camera system for

producing the light field. Our system couples a high-res/low-res camera pair to replace

the bulky camera array system. With the input stereo pair, we recover a low-resolution

disparity map and upsample it via fast cross bilateral filters. We subsequently use the

recovered high-resolution disparity map and its corresponding video frame to synthesize

a light field using GPU-based disparity warping. We also use the image-space filtering

technique to reduce aliasing. Finally, we generate racking focus and tracking focus

effects using light field rendering. Compared with Lytro, our solution can produce

images at the full resolution of the view camera.
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Chapter 1

INTRODUCTION

Rays are directed lines in 3D space. They represent the visual information

about a scene by their associated radiance function [3]. A light field [64, 42] captures

a dense set of rays as scene descriptions in place of geometry. To represent each ray, a

light field uses a two-plane parametrization (2PP). Every ray is parameterized by its

intersections with two parallel planes: [s, t] as the intersection with the first plane Πst

and [u, v] as the second with Πuv. Rays in a light field hence form a 4D space.

An important application of light fields is the light field rendering. Conceptually,

one can obtain any view of the scene by extracting appropriate 2D slices from the

4D light field [64, 42]. Different parameterization of the light field and slices could

result in perspective, orthographic, cross-slit [139], and multi-perspective [87] views.

One can also synthesize dynamic depth of field (DoF) effects of a camera with finite

aperture by integrating appropriate 4D subsets of a light field. In this case, different

parameterizations of the light field correspond to views focusing on different fronto-

parallel planes [48] or oblique planes [116] in the scene.

To capture the light field, numerous light field imaging systems have been built

based on the idea of integral photography [68]. The Stanford light field camera array

[122, 123, 114, 115] is a two dimensional grid composed of 128 1.3 megapixel firewire

cameras which stream live video to a stripped disk array. The large volume of data

generated by this array forces the DoF effect to be rendered in post processing rather

than in real-time. Furthermore, the system infrastructure such as the camera grid,

interconnects, and workstations are bulky, making it less suitable for on-site tasks.

The MIT light field camera array [127] uses a smaller grid of 64 1.3 megapixel USB
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webcams instead of firewire cameras and is capable of synthesizing real-time dynamic

DoF with sacrificed image quality.

Recent realization of the hand held plenoptic/light field cameras [75, 70, 2, 39]

replace the bulky camera array by coupling a microlens array with the mainlens to

capture 4D radiance about a scene. Similar to the camera array, a light field camera,

in essence, is a single-shot, multi-view acquisition device. Each captured microlens

image maps to a perspective view from a different location in the scene. To densely

sample the angular information, the commercial Lytro light field camera uses a 11

megapixel sensor to capture 0.11 million spatial samples and 100 angular samples on

the plane of the microlens array. To achieve higher spatial resolution near the focal

plane of the mainlens, Raytrix R11 camera uses a 10.7 megapixel sensor with increased

spatial resolution at 0.47 million samples on the microlens array plane and reduced

angular resolution at 23 samples per microlens.

Although impressive progresses on the sampling efficiency and imaging quality

have been achieved based on recent light field imaging designs [75, 70, 2, 39, 118, 10],

the problem of low spatial/angular resolution remains as an open but most challenging

problem. The problem is inherent to the light field camera design – when using a 2D

sensor to capture a 4D light field, we inevitably need to trade off between the angular

(i.e., the number of views) and the spatial (the resolution of each view) resolutions

[39]. A low angular resolution will lead to severe aliasing artifacts in refocusing and

a low spatial resolution will produce images with low quality. Directly applying im-

age superresolution techniques [17, 121] has limited capability of improving the image

quality. Finally, nearly all light field cameras by far can only capture static images,

i.e., they have extremely low temporal resolution. This is due to the huge amount of

the data in each captured light field (larger than 20 MB per frame) which prohibits

real-time video streaming and processing.
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1.1 Dissertation Statement

This dissertation focuses on exploring new image processing algorithms and

camera designs to improve the spatial, angular, and temporal resolution of light field

imaging.

1.1.1 Spatial Resolution

To improve the image resolution of the light field camera, we develop a simple

but effective technique by using a novel demosaicing process. A light field camera,

same as traditional color cameras, captures color information with a Color Filter Ar-

ray (CFA) masking the sensor pixels. We first show that the traditional solution

[75, 70, 2, 39] that demosaics each individual microlens image and then blends them

for rendering is suboptimal. In particular, this demosaicing process damages high fre-

quency information recorded by each microlens image, hence greatly degrading the

achievable resolution of the final photograph. We instead perform demosaicing on

the synthesized color photograph at each refocusing plane. Specifically, we first repa-

rameterize the light field to the desired focal plane and then apply frequency domain

plenoptic resampling. A full resolution color filtered image is then created by per-

forming a 2D integral projection from the reparameterized light field. Demosaicing is

performed as a last step to obtain the final color result.

1.1.2 Angular Resolution

To increase the angular resolution, we present a new light field triangulation

technique. The triangulation provides a natural anisotropic reconstruction kernel: any

point in the space can be approximated using a convex combination of the enclos-

ing simplexs vertices (samples). The simplest triangulation method is to apply high

dimensional Delauney triangulation [31]. Such triangulations produce simplices (or

pentatopes if in 4D) of “good shapes”. However, triangulating the light field as such

leads to severe aliasing. A better approach is to align simplices with ray geometry of
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3D scene.

Line Assisted Light Field Triangulation We explore ray structures of a specific

scene geometry, 3D line segments. We show that it is important to handle non-linear

(bilinear) ray structures in order to properly triangulate the light field ray space and

brute-force triangulating the light field causes large errors. In particular, we show that

3D lines in the light field follow bilinear constraints hence we propose new constrained

triangulation methods to resolve this issue in 2D, 3D and 4D light fields. Specifically,

we can first estimate the disparity (depth) of the feature pixels (rays), then map them

to the edge constraints, and finally apply Constrained Delaunay Triangulation (CDT)

[97]. We show this approach is still insufficient to produce high quality triangulations:

the light field space contains a large amount of non-linear, or more precisely, bilinear

substructures that correspond to 3D line segments. Brute-force triangulation of these

bilinear structures leads to large errors and visual artifacts. We instead present a new

solution that combines the bilinear and edge constraints for CDT.

Improved Light Field Stereo Matching To conduct light field triangulation, we

need to first obtain a high quality disparity/correspondence map. We present two novel

solutions.

Light Field Stereo In The Case Of Occlusions: One of the obstacles to recover

a high-resolution depth map is occlusion. Traditional methods rely on either empirical

or statistical solutions. We first analyze the behavior of pixels in such situations. We

show that even under severe occlusion, one can still distinguish different depth layers

based on statistics. To robustly resolve occlusion, we apply an iterative plane sweeping

from the closest depth layer to the furthest, so that the occlusion pixels will be masked

out when estimating local minima. However, pixels on constant color surfaces tend

to choose small disparity since they will lead to small variance. To avoid these trivial

solutions, we further propose a global optimization solution and an edge mask solution.

Experimental results show that our algorithm is able to recover accurate depth map
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from the light field images captured by plenoptic cameras.

Line Constrained Light Field Stereo Matching: Our ray geometry analysis of

3D lines also leads to a new light field stereo algorithm. We first introduce a new F3

energy term to preserve disparity consistency along line segments. We then modify the

binocular stereo graph via the general purpose graph construction framework [53] and

solve it using the extended Quadratic Pseudo-Boolean Optimization algorithm [91]. We

validate our approach on Middlebury datasets, Stanford light field datasets [112] and

real light field data acquired by the Lytro camera [71]. Experiments show that both

our light field triangulation and stereo matching algorithms outperform state-of-the-art

solutions in accuracy and visual quality.

1.1.3 A Unified Spatial-Angular Resolution

We further explore fusing multiple light fields under a common framework to

simultaneously increase the spatial and angular resolution. We call this technique

“Light Field Quilting”. Given N captured low resolution 4D light fields L1 to LN

with overlapped subspaces, our solution quilts them into a “super” light field with a

higher resolution by finding smooth cuts in the overlapped subspaces. We start by

modeling the registration between light fields as 5D homography matrices and then

compute the homography by matching scale-invariant feature transform (SIFT) image

features. Next, we iteratively warp the each light field towards its neighbor to find the

overlapped subspaces. To find a cut in each overlapped subspace, we build a 4D light

field graph and apply graph-cut optimization to find the optimal quilting paths. Since

light fields are high dimensional, computing the cuts using graph-cut can be slow. We

therefore employ a hierarchical approach [6] that uses the graph-cut result at a coarser

resolution to prune the graph at a finer resolution in order to speed up the overall

graph-cut speed of the high dimensional light field graph. Our approach can enhance

light field resolutions in specific dimensions for various applications. For example, we

can create a wide horizontal FoV light field from a series of light fields captured with a

rotational light field camera. We can also create a megapixel (spatial resolution) light
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field from a group of low spatial resolution light fields captured on a two dimensional

angular grid. Finally, we can enhance the bokeh and parallax by either translating the

light field camera or orbiting it around the object of interest.

1.1.4 Temporal Resolution

The high dimensionality of light fields prohibits continuous capturing by light

field cameras. Alternatively, we construct a hybrid-resolution stereo camera system by

coupling a high-res/low-res camera pair. We recover a low-res disparity map based on

each pair of images and upsample it via fast cross bilateral filters. We then subsequently

use the recovered high-resolution disparity map and its corresponding video frame

to synthesize a light field. We implement a GPU-based disparity warping scheme

and exploit atomic operations to resolve visibility. To reduce aliasing, we present

an image-space filtering technique that compensates for spatial undersampling using

mipmapping. Finally, we generate dynamic DoF effects using light field rendering. Our

system can produce racking and tracking focus effects for at resolution of 640× 480 at

15 frame per second.

1.2 Contributions

This dissertation makes the following contributions to the light field imaging.

1.2.1 Spatial Resolution

We develop a simple but effective technique for improving the image resolution of

the plenoptic camera by maneuvering the demosaicing process. We first show that the

traditional solution by demosaicing each individual microlens image and then blending

them for view synthesis is suboptimal. We instead propose to demosaic the synthesized

view at the rendering stage to obtain a higher resolution color result. We show that

our solution can achieve visible resolution enhancement on dynamic refocusing and

depth-assisted deep focus rendering.
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1.2.2 Angular Resolution

We explore geometric structures of 3D lines in ray space for improving light

field triangulation. We show that the light field space is largely bilinear due to 3D

line segments in the scene, and direct triangulation of these bilinear subspaces leads

to large errors. We instead present a simple but effective algorithm to first map bi-

linear subspaces to line and surface constraints and then apply Constrained Delaunay

Triangulation (CDT).

The depth of each sample is required as a guidance to correctly conduct light field

superresolution. To improve the current depth estimation algorithms, we propose two

solutions: 1) We analyze the behavior of pixels under severe occlusion. We show that it

is difficult to distinguish different depth layers based merely on statistics. Instead, we

propose an iterative process to resolve occlusion. 2) We explore geometric structures

of 3D lines in 4D ray space for improving light field stereo matching. We add the

bilinear property of 3D lines as an additional constraint for the multi-view graph cuts

framework.

1.2.3 Spatial-Angular Resolution

We present a unified framework to enhance spatial-angular resolution based on

multiple light fields. Our solution first estimates the registration among the captured

light fields, and then conducts projective warping to find the common subspaces among

the light fields. Finally, our solution maps the inconsistency in the subspaces to the

4D graph cuts framework and finds the best seam to quilt those light fields.

1.2.4 Temporal Resolution

We construct a hybrid-resolution stereo camera system for synthesizing the light

field in real time. Our system couples a high-res/low-res camera pair to replace the

bulky camera array system. With the input stereo pair, we recover a low-resolution

disparity map and upsample it via fast cross bilateral filters. We subsequently use the

recovered high-resolution disparity map and its corresponding video frame to synthesize
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a light field using GPU-based disparity warping. We also use the image-space filtering

technique to reduce aliasing. Finally, we generate racking focus and tracking focus

effects using light field rendering. Compared with Lytro, our solution can produce

images at the full resolution of the view camera.

1.3 Blueprint of the Dissertation

This dissertation is organized as follows. Chapter 2 reviews the background

and previous work on modeling the light field space, designing light field cameras and

applying light field imaging on 3D reconstruction, dynamic depth of field rendering,

and novel view synthesis. I also highlight their limitations caused by spatial, angular

and temporal resolutions.

Chapter 3 discusses an approach for improving spatial resolution in light field

photography by maneuvering the demosaicing stage of traditional light field rendering.

Chapter 4 describes a light field triangulation technique for enhancing the an-

gular resolution of a captured light field.

Chapter 5 introduces two approaches that use light field stereo matching for

depth/disparity estimation. The first approach iteratively resolve the occlusion prob-

lem during the disparity estimation. The second approach employ the 3D line con-

straints/priors to improve the stereo matching process.

Chapter 6 presents a high-dimensional image based rendering technique which

takes multiple light fields as inputs and generates new light fields with higher spatial

and angular resolution as outputs.

Chapter 7 develops a stereo based light field camera that can acquire dynamic

light field videos and synthesize racking focus and tracking focus effect in real time.

Chapter 8 proposes an alternative light field imaging solution using a catadiop-

tric mirror array and discuss its unique advantage on low light imaging.

Chapter 9 concludes the dissertation and discusses future extensions.
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Chapter 2

PREVIOUS WORK

In this chapter, I briefly review the background and previous work on light

field cameras. We first review the work on modeling the light field space. We then

discuss existing work in light field cameras and their applications in computer vision

and graphics. These include 3D reconstruction, dynamic depth of field rendering, and

novel view synthesis.

2.1 Light Fields

The concept of light field can be traced back to 1936 by Arun Gershun in a

classic paper on the radiometric properties of light in 3D space. The radiance along

all rays in a region of 3D space illuminated by an unchanging arrangement of lights is

called the plenoptic function [3]. The plenoptic function is the 5-dimensional function

representing the intensity or chromacity of the light observed from every position and

direction in 3-dimensional space.

In a plenoptic function, if the region of interest contains a concave object, then

light leaving one point on the object may travel only a short distance before being

blocked by another point on the object. There, it is difficult to measure the function

in such a region. However, if we restrict ourselves to locations outside the convex

hull of the object, then we can measure the plenoptic function by many ways, e.g.,

taking many photos using a camera. Moreover, since the radiance along a ray remains

constant, this function contains one dimensional redundant information (along the ray).

Therefore we can simplify the plenoptic function with a 4-dimensional function (that is,

a function of points in a particular 4-dimensional manifold), as long as we ignore both

rays flowing towards the object and rays emanating from the object on the opposite
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side. Parry Moon dubbed this function the photic field (1981), while researchers in

computer graphics call it the 4D light field [64] or Lumigraph [42]. Formally, the 4D

light field is defined as radiance along rays in empty space.

In essence, light fields are simply data structures that support the efficient in-

terpolation of the radiance estimates along specified rays. In conventional light fields,

a 2PP is commonly used to represent rays, where each ray is parameterized in the coor-

dinates of the camera plane (Πuv) and a image plane (Πst). Rays in the light field hence

form a 4D space. A closely related representation to a light field is the lumigraph [42].

A lumigraph incorporates an approximate geometric model, or proxy, in the interpola-

tion process, which significantly improves the quality of the reconstruction. To acquire

better results with a severely undersampled light field, scam light field rendering [131]

combined both parameterizations in their algorithm. More recently, surface light fields

[124] suggested an alternative ray parameterization where rays are parameterized over

the surface of a pre-scanned geometry model.

2.2 Acquisition of Light Fields

The light field acquisition devices range from a robotically controlled moving

camera [113], a dense array of cameras [122, 127], to hand-held light field cameras

[76, 70, 2, 39] and light field microscopes. We categorize them into three categories by

their main optical components.

2.2.1 Light Field Camera Array

The most straightforward scheme to capture the light field is to move a camera

along a 2D path to sample the 4D ray space [48, 64]. Although this method is simple

and easy to implement, it is only suitable for acquiring static scenes. Wilburn et al.

[122, 123] instead built a 2- dimensional grid composed of 128 1.3 megapixel firewire

cameras which stream live video to a stripped disk array. The large volume of data

generated by this array forces the DoF effect to be rendered in post processing rather

than in real-time. The MIT light field camera array [127] uses a smaller grid of 64
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1.3 megapixel USB webcams instead of firewire cameras and is capable of synthesizing

real-time dynamic DoF effects. Both systems, however, still suffer from spatial aliasing

because of the baseline between neighboring cameras. Moreover, constructing such a

light field camera array is extremely time and effort consuming and requires substantial

amount of engineering.

2.2.2 Hand-Held Light Field Camera

To replace the bulky system, various solutions have been proposed. A notable

example is the realization of the hand-held plenoptic/light field camera [75, 70, 2, 39],

a camera that uses a microlens array to capture 4D light field about a scene. In order

to overcome the spatio-angular tradeoff, an ultra-high resolution sensor is commonly

used. The resulting images, however, are still at a disappointingly low resolution.

For example, Ng [75] improved the traditional plenoptic camera design and introduced

new methods for computational refocusing. This plenoptic camera places the microlens

array at plane Π in front of the camera sensor to separate converging rays (Fig. 2.1(a)).

Specifically, the sensor is located at the focal plane of each microlens so that each

microlens is focusing at its optical infinity (main lens principal plane). The F-numbers

of the main lens and each microlens are matched to avoid “Cross-Talk” among microlens

images. This design achieves high angular resolution by sacrificing spatial resolution

near Π. Lumsdaine et al. [70] introduced another design by focusing the microlens

array on Π and correspondingly adjusting the position of the microlens array and the

sensor (Fig. 2.1(b)). In this case each microlens image will have samples with more

spatial resolution and less angular resolution on Π. Therefore this design is capable

of producing higher resolution results when focusing near the sampled image plane.

However, the lower angular resolution may cause ringing artifacts in out of focus regions

of the rendered image.

Most recently, based on Ng’s design, the commercial Lytro light field camera

uses an 11 mega pixel sensor to capture 0.11 million spatial samples and 100 angular

samples on the plane of the lenslet array. Raytrix R11 camera follows the design of
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Lumsdaine and uses a 10.7 mega pixel sensor to capture 0.47 million spatial samples and

23 angular samples. However, these designs still suffer from the spatial angular tradeoff

caused by multiplexing the 4D light field onto a 2D sensor: a low angular resolution will

lead to severe aliasing artifacts in refocusing and a low spatial resolution will produce

images with low quality.

2.2.3 Mask Based Light Field Camera

Instead of using a lenslet array to separate light arriving at the same pixel

from different directions, Veeraraghavan et al. [Veeraraghavan07] proposed reversible

modulation of 4D light field by inserting a patterned planar mask in the optical path

of a lens based camera. The patterned mask attenuates light rays inside the camera

instead of bending them, and the attenuation recoverably encodes the ray on the 2D

sensor. This process can be viewed as heterodyning the incoming light field in the

frequency domain. To recover the light field, they first transform the captured 2D
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image into frequency domain and then rearrange the tiles of the 2D Fourier transform

into 4D space. Finally, the light field of the scene is computed by taking the inverse

4D Fourier transform. Further, they can insert the mask at different location along the

optical path of the camera to achieve dynamic frequency modulation. However, the

mask partially blocks out the incoming light and greatly reduces light efficiency.

2.2.4 Mirror Based Light Field Camera

It is also possible to acquire the light field using a catadioptric mirror array.

Unger et al. [111] combined a high resolution tele-lens camera and an array of spherical

mirrors to capture the incident light field. The use of mirror arrays instead of lenslet

arrays has its advantages: it avoids chromatic aberrations caused by refraction, it does

not require elaborate calibration between the lenslet array and the sensor, it captures

images at a wide FoV, and it is less expensive and reconfigurable. The disadvantages are

three-fold: First, each mirror image is non-pinhole and therefore requires conducting

forward projection for associating the reflection rays with 3D points. Second, the

sampling of the light field is nonuniform. Third, a large F-number is required to avoid

defocus blur on the mirror, hence reducing the light efficiency.

Two notable examples of these systems are the spherical mirror arrays by Ding

et al. [34] and Taguchi et al. [108]. In [34], the authors applied the GLC-based forward

projection on multi-view space carving for reconstructing the 3D scene. Taguchi et al.

[108] developed both a mirror array and a refractive sphere array and applied the

axial cone modeling for fast forward projection using GPU. They have shown various

applications including distortion correction and light field rendering.

2.3 Light Field Rendering

An important application of light fields is the light field rendering. We briefly

introduce three different trends of this application.
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2.3.1 Spatial Domain Rendering

Isakesen et al. [48] first proposed to apply wide aperture filter to synthesize DoF

from the light field. The pixel values on the image are proportional to the irradiance

[103] received at the sensor, computed as a weighted integral of the incoming radiance

through the lens:

I(s, t) ≈
∫∫

Lin(u, v, s, t)cos
4Φdudv, (2.1)

where I(s, t) is the irradiance received at pixel (s, t), and Φ is the angle between

a ray Lin(u, v, s, t) and the sensor plane normal. This integral can be estimated as

summations of the radiance along the sampled rays:

I(s, t) ≈
∑
(u,v)

Lin(u, v, s, t)cos
4Φ. (2.2)

Isaksen et al. [48] directly applied Eqn. 2.2 to render the DoF effects. Specifically,

from each pixel p(s, t) on the sensor, they first trace out a ray through lens center o

to find its intersection Q with the focal plane. Then, Q is backprojected onto all light

field cameras and blended with the corresponding pixels. Finally, the pixel value is

computed by the weighted average of its corresponding pixels.

2.3.2 GPU Based Rendering

The spatial rendering lends itself well to parallel processing. Recently, Yu et al.

[PG 10] proposed a new GPU based algorithm for efficient rendering of high-quality

dynamic DoF effects from a single view and its depth information. Specifically, they

first reconstruct the light field by warping the reference view to nearby views with the

depth information, and exploit the atomic operations to resolve visibility when multiple

pixels warp to the same image location. They then directly synthesize DoF effects

from the sampled light field. To reduce aliasing artifacts, they rely on image-space

filtering technique which compensates for spatial undersampling using mipmapping.

More recently, Lumsdaine et al. [Plenoptic Rendering GPU] presented a progression of

rendering approaches for focused plenoptic camera data and analyzed their performance
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on popular GPU-based systems. They are able to render 39 mega-pixel light field data

to 2 mega-pixel images at over 500 frame per second.

2.3.3 Frequency Domain Rendering

Inspired by the well-known Fourier Slice Theorem, Ng [75] presented a new

Fourier Slice Photography algorithm for light field rendering in the frequency domain.

The algorithm is based on the Fourier Photography theory which was derived from

the geometrical optics of image formation. The theory states that in the frequency

domain, a photograph formed with a full lens aperture is a 2D slice in the 4D light field.

Photographs focused at different depths correspond to slices at different trajectories in

the 4D space. This algorithm is significant faster than spatial-domain representation

(O(n2 log n) vs. O(n4)). However, the preprocessing cost is relatively large (O(n4 log n)

for 4D fast Fourier transform) and the light field must be uniformly sampled.

2.4 Geometric Structures

The light field ray space is a vector space. Any linear combination of the

[s, t, u, v] coordinate of two rays is still a valid ray. To study ray geometry of local ray

tangent plane, Yu and McMillan [130] developed a new camera model called the Gen-

eral Linear Camera (GLC). GLCs are 2D planar ray manifolds which can apparently

describe the traditional pinhole, orthographic, pushbroom, and XSlit cameras. A GLC

is defined as the affine combination of three generator rays ri = [ui, vi, si, ti], i = 1, 2, 3:

r = α[u1, v1, s1, t1] + β[u2, v2, s2, t2] + (1− α− β)[u3, v3, s3, t3] (2.3)

For example, in the ray tangent plane analysis, the three ray generators are chosen as

r, r + d1 and r + d2. Similar to defining a 2D plane in 3D space, a GLC is the affine

combination of three rays. Their studies have shown that the light field ray space is

mostly linear: scene geometry such as 3D points or parallel directions maps to GLCs.

There also exists non-linear structures in the light field. For example, 3D lines parallel

to the 2PP maps to hyperplanes in the light field, while 3D lines not parallel to the light
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field maps to bilinear surfaces. We will elaborate on 3D lines and explore the usage

of bilinear structures in the context of light field triangulation and stereo matching in

Chapter 4.

2.5 Frequency Structures

Recent studies have further characterized the frequency attributes of ray space.

Chai et al. [25] mathematically derived the analytical functions to determine the

minimum sampling rate for light field rendering. They discovered that spectral support

of a light field signal is bounded by the minimum and maximum depths only, not depth

variations in the scene. They further obtained the minimum sampling rate for light

field rendering by compacting the replicas of the spectral support of the sampled light

field within the smallest interval. They also designed reconstruction filters based on

an optimal and constant depth to reduce aliasing artifacts in light field rendering.

Also related to light field structures is light transport. Durand et al. [SIG-

GRAPH ’05] presented a signal-processing framework for light transport. They studied

the frequency content of radiance and how it is affected by phenomena such as shad-

ing, occlusion, and travel in free space. They characterized how the radiance signal is

modified as light propagates and interacts with objects. In particular, they show that

occlusion amounts in the frequency domain to a convolution by the frequency content

of the blocker. Propagation in free space corresponds to a shear in the space-angle fre-

quency domain, while reflection on curved objects performs a different shear along the

angular frequency axis. Their extension shows how the spatial components of lighting

are affected by this angular convolution. They also showed that their signal-processing

framework predicts the characteristics of interactions such as caustics, and the disap-

pearance of the shadows of small features. Predictions on the frequency spectrum of

the radiance function can then be used to control sampling rates or the choice of re-

construction kernels for rendering. Other potential applications include pre-computed

radiance transfer and inverse rendering.
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Georgiev et al. [2007] presented a theory that encompasses both microlens based

and mask based light field cameras into a single frequency domain mathematical for-

malism. In particular, inspired by the heterodyning concept, they derive a theory of

recovering the 4D spatial and angular information from the multiplexed 2D frequency

representation which applies for both microlens based and mask based light field cam-

eras. Moreover, their theory also suggested new designs for light field cameras.

More recently, Levin et al. studied the designs of effective extended-DoF sys-

tems by analyzing defocus kernels in the 4D light field space in the frequency domain.

Specifically, they showed that only a low-dimensional 3D manifold contributes to fo-

cus. Thus, imaging systems should concentrate their limited energy on this manifold

in order to maximize the defocus spectrum. They also showed that conventional com-

putational imaging systems either spend energy outside the focal manifold or do not

achieve a high spectrum over the DoF. Guided by this analysis they further introduced

the lattice-focal lens, which concentrates energy at the low-dimensional focal mani-

fold and achieves a higher power spectrum than previous designs. They also built a

prototype lattice-focal lens and presented extended depth of field results.

2.6 Improving Light Field Resolutions

Traditional light field parameterization denotes the samples on the uv/camera

plane as spatial samples, and samples on st/sensor plane as angular samples. More-

over, each captured light field at a different time is a 4D sample along the temporal

dimension. Hence light field images form snap shots of a 5D spatial-angular-temporal

space.

Due to the high dimensionality of this space, most light field imaging devices

focus on maximizing spatial-angular resolution to achieve good image quality. For

example the light field camera arrays captures high spatial-angular resolution light

fields. However the huge amount of data prohibits continuous capturing and real time

rendering. To reduce the form factor, the commodity light field cameras either sacrifice
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the spatial resolution or the angular resolution. Even so, the current data bandwidth

still does not support light field video capturing.

In this section, we categorize the recent work by improving light field resolution

on spatial, angular, or temporal dimensions.

2.6.1 Angular Resolution

Since representing all light rays present in a scene is usually impractical or

impossible, a real light field generally contains only a finite sampling of the rays.

Thus, as with any discrete sampling of a continuous signal, we are faced with the

undersampling problem in signal reconstruction.

If an angularly undersampled light field is rendered using the common linear

interpolation method, the result will exhibit an aliasing artifact called “ghosting”,

where multiple copies of a single feature appear in the interpolated light field views. To

reduce aliasing artifacts during interpolation, various light field reconstruction/filtering

approaches have been proposed. Levoy and Hanrahan [64] pointed out that light field

aliasing can be eliminated with proper pre-filtering. Isaksen et al. [48] later showed that

pre-filtering has the undesirable side effect of requiring the pre-decision of which part of

the scene can be rendered in focus during reconstruction. Reconstruction of an under-

sampled light field can also benefit from the depth information. Analyses of Gortler et

al. [42] and Chai et al. [25] both showed that the introduction of depth ameliorates the

aliasing artifacts. However, as pointed by Steward et al. [102], it is usually inconvenient

to acquire depth information from the real scenes. They subsequently proposed a

hybrid reconstruction filter that combines a full aperture kernel with a band-limited

kernel in the frequency domain. The filter can recover more useful information without

introducing aliasing. However, their technique cannot handle non-linear phenomenon

such as occlusions.

More recently, Wanner and Goldlüecke [121] formulate the problem of angular

superresolution as a continuous inverse problem, which allows them to correctly take

into account foreshortening effects caused by scene geometry transformations. They
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employ state-of-the-art convex optimization algorithms to fast minimize the superres-

olution model energy. However, their method require accurate depth estimation as the

prior knowledge. Levin and Durand [63] use the dimensionality gap prior to recover

the 4D light field from a 3D focal stack using linear view synthesis. Their method

does not require depth estimation but the assumption of most energy lying in the 3D

manifold of the light field limits the scenes to be Lambertian.

In this dissertation, we propose two approaches for angular superresolution.

First, we explore improving the angular resolution of the captured light field by con-

ducting a constrained light field triangulation. Comparing with traditional light field

superresolution, our triangulation does not require dense correspondence information,

hence has the potential of light field compression. Next, we present a light field quilt-

ing framework by fusing multiple captured light fields into a single higher angular

resolution light field.

2.6.2 Spatial Resolution

To improve the spatial resolution of the light field, Bishop et al. [17] reconstruct

each view at higher resolution by explicitly modeling the image formation process and

incorporating priors such as Lambertianity and texture statistics. They then map

this modeling onto a variational Bayesian framework and perform the superresolution.

Their performance, however, is prior dependent. Georgiev et al. [41] applied demo-

saicing after plenoptic rendering to improve plenoptic superresolution. Their approach

used a straightforward demosaicing scheme on the refocusing plane, resulting in signif-

icant color artifacts in out-of-focus regions of the rendered images.

There is also an emerging trend of reconstructing sparsely sampled light field

for light field compression. Lehtinen et al. [62] explored the anisotropy in the temporal

domain and enhanced the reconstruction quality by a large factor. Marwah et al. used

an overcomplete dictionary to reconstruct a sparse coded LF. However, the performance

of their method is largely related to the relevance of the dictionary with the scene.
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Heide et al. applied Markov Chain Monte Carlo sampling instead of uniform sampling

on the target light field for better reconstruction.

In this thesis, we present a more robust light field demosaicing approach to

increase the spatial resolution. We theoretically analyze the resolution enhancement

and sampling pattern on the refocusing plane compared with each microlens, we then

conduct light field demosaicing coupled with a light field resampling to reduce the color

artifacts. We also use our light field quilting framework to acquire a higher angular

resolution light field from several captured light fields.

2.6.3 Temporal Resolution

Due to the large amount of data in each captured light field image, currently

there are few practical solution for continuously capturing the light fields. To enable

the acquisition of light field videos, the straight forward approach is to build a camera

array. However, the Stanford camera array mentioned in Sec. 2.2.1 generates high

resolution images but does not support realtime processing, while the MIT camera

array supports dynamic DoF in realtime but produces low quality results.

More recently, Agrawal et al. [10] proposed a mask based optical design to

achieve spatial-angular-temporal tradeoffs using a time-varying aperture mask and a

static mask close to the sensor. Their design allows variable resolution tradeoff de-

pending on the scene with two novel outputs: 1) 1D refocusing on an object moving in

depth and 2) single-shot video capture. However, their method trades spatial-angular

resolution for temporal resolution, hence the output video sequence is at a much lower

resolution than the captured image. Moreover, the dynamic components in the scene

lose refocus capability. Lastly, the masks on the aperture and the sensor greatly reduce

the light efficiency of the design.

In this thesis, we present a much simpler solution based on stereo matching. Our

system is able to generate dynamic DoF effect at full camera resolution with interactive

speed. Comparing with light field cameras, our system is restricted to Lambertian

scenes but better preserves the spatial resolution. Comparing with Agrawal et al. [10],
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our system captures the scene at a higher frame rate while providing dynamic DoF

capabilities.
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Chapter 3

ENHANCING SPATIAL RESOLUTION VIA EFFECTIVE
DEMOSAICING

In this chapter, I discuss how to enhance the spatial resolution in light field pho-

tography by maneuvering the demosaicing process. Specifically, we first show that the

traditional solution by demosaicing each individual microlens image and then blending

them for view synthesis is suboptimal. In particular, this demosaicing process often

suffers from aliasing artifacts, and it damages high frequency information recorded by

each microlens image hence degrades the image quality. We instead propose to demo-

saic the synthesized view at the rendering stage. Specifically, we first reparameterize

the captured light field to the desired focal plane and then apply frequency domain

plenoptic resampling. A full resolution color filtered image is then created by perform-

ing a 2D integral projection from the reparameterized light field. Finally, we conduct

demosaicing to obtain the color result.

3.1 Image Demosaicing

While a significant amount of work on plenoptic cameras has been focusing on

improving the image resolution [102, 17, 40], demosaicing remains as an understudied

problem. Demosaicing, in essence, converts single-CCD color representations of one

color channel per-pixel into full per-pixel RGB. The most popular type of CFA in cur-

rent use is the Bayer filter [14]. Demosaicing a raw Bayer image requires an underlying

image model to guide decisions for reconstructing the missing color channels: at every

pixel only one color channel is sampled and therefore we need to use its nearby sam-

ples to reconstruct the other two channels. Many sequential methods [66, 49, 1, 47, 74]

have been introduced based on the assumption that green channel is less aliased than
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the other two due to higher sampling frequency. More sophisticated methods impose

local gradients [69] or frequency statistics [67, 11, 35, 73] as constraints to improve the

performance.

However, by far nearly all demosaicing techniques aim to process images cap-

tured by commodity digital cameras and very little work has been focused on developing

solutions specifically for plenoptic cameras. Existing plenoptic cameras typically de-

mosaic each individual microlens image and treat the captured plenoptic function as

a captured RGB image. One exception is the paper by Georgiev et al. [41] that ap-

plies demosaicing after plenoptic rendering to improve plenoptic superresolution. The

approach presented in [41] used a straightforward demosaicing which does not resam-

ple the light field, resulting in significant color artifacts in out-of-focus regions of the

rendered images. Other related work is the spatial domain multi-frame demosaicing

and super-resolution technique reported in [37]. However, their focus is to combine

multiple low resolution images whereas we aim to manipulate demosaicing to improve

refocused images produced by plenoptic rendering.

3.2 Image Demosaicing in a Plenoptic Camera

We start by analyzing the traditional image demosaicing on plenoptic cameras.

Before proceeding with our analysis, we introduce our notation. Let I(s) represent

the irradiance of pixel s on the image plane Π and ri represent the RGB radiance of a

single ray captured by microlens mi. Ii is the ideal optical RGB image at mi. In real

cameras, we get a color filtered image Ifi instead of Ii due to color filtering. For each

color channel, Ifi can be viewed as an undersampled version of Ii in that channel. The

demosaicing operator D upsamples Ifi to recover Ii.

3.2.1 Classical Rendering

The classical plenoptic rendering approach first applies demosaicing to each

individual microlens image and then applies integral projection for refocusing. Let b

denote the distance from the sensor to the microlens array and si denote the location
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(a) (b) (c)

Figure 3.1: Artifacts on the captured light field introduced by classical demosaicing.
(a) Ground Truth. (b) Raw microlens image and its frequency spectrum.
(c) Demosaiced microlens image and its frequency spectrum.

of the optical center of mi. In the discrete case, if we focus at Π with distance a to the

microlens array, we can compute the irradiance I ′(s) by:

I ′(s) ≈
∑
i

D(Ifi((si − s)
b

a
+ si), (3.1)

Let ωi denote the highest frequency of Ii and ω denote the sampling frequency of Ifi.

In the trivial case (∀i)[2ωi ≤ ω], we can completely recover the full frequency microlens

images Ii and hence the refocused image. In the general case when (∃j)[2ωj > ω], the

spectrum of Ifj exhibits aliasing due to undersampling as shown in Fig. 3.1(b). In this

case, the demosaic operator D is used to eliminate undersampling artifacts. However,

D generally behaves as a low pass filter, indiscriminately removing high frequencies,

thereby degrading the image sharpness of the final refocused image. Finally, if Ifi

is severely undersampled, demosaicing (such as that performed by Adobe Photoshop

Camera Raw) can introduce inconsistent color interpolation and cause color bleeding

in the refocused image as shown in Fig. 3.1(c) (black and white patterns become
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Figure 3.2: (a) Possible resolution enhancement on the refocus plane by projecting
multiple microlens images. (b) Plots of function Δd(h), β(h), and γ(k).

colorful).

3.2.2 Resolution on the Refocus Plane

In this section, we provide a theoretical analysis to show that the projected

image If on plane Π has a higher sampling frequency than any of the microlens images,

hence performing demosaicing on If could greatly improve the image resolution. For

simplicity, we model each microlens as a pinhole camera and only analyze rays passing

through each optical center. Also for simplicity, we show only one spatial dimension

s. Consider two adjacent pixels pA and pB (pA < pB) in a specific microlens m1 that

map to two points A and B on the target focal plane Π. Assume the distance between

pA and pB is 1, the distance between two adjacent microlenses is d, Π lies at distance

a to the microlens array, the sensor lies at distance b to the microlens array, and the

spacing between m1 and m2 is h, as shown in Fig. 3.2(a). Note that since the pixel

distance is vanishingly small compared with a, b, and d, we simply treat these latter

quantities as integers.
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Our goal is to study how many rays (pixels) from other microlenses would fall

between A and B on Π. This number approximates the factor of resolution enhance-

ment compared with the classical demosaicing followed by rendering approach. In

order to estimate this number, we first introduce a function γ which maps the index

of a given microlens to its sampling point between A and B. Since all the microlenses

out of the minimum period T of γ are duplications of samples within T , we find out T

of γ and use it as the upper bound of the resolution enhancement.

Note that for each microlens m2 different from m1, we can have at most 1 point

between AB that maps to a pixel tom2 as the length AB is preserved in all microlenses.

Assume A and B map to points p′A and p′B in m2, as shown in Fig. 3.2(a). Note that p′A

and p′B may not be pixels. In the first case, p′A and p′B fall exactly on the pixels position.

In that case, no additional rays (pixels) from m2 would intersect the segment AB on

plane Π. Therefore, m2 would not contribute to enhancing the resolution between AB.

Under similitude relationship, the conclusion holds for any pair of adjacent pixels in

m1 and m2, i.e., m2 would not contribute to enhancing the resolution to m1’s image.

In the second case, A and B do not coincide with pixels in mk and there is

exactly one point C between A and B that maps to a pixel in pC in mk. we call C

a super-pixel as it will increase the resolution between AB. We can then compute

pC = a+b
a
h and the distance β between A and C on the focal plane as:

β(h) = (
a+ b

a
h− �a + b

a
h	)a

b
. (3.2)

Note that function β(h) is a periodic function with a minimum period of a
a+b

< 1. For

each microlens, we can substitute its distance h into m1 and compute the location of

this super-pixel. If the super-pixels in some N microlenses have identical β values, then

these microlenses only contribute 1 rather N super-pixels for enhancing the resolution

between AB.

To finally compute the exact resolution enhancement, recall that in the microlens

array setting, h = kd fromm1, where k is some positive integer and d > 1. We can then

concatenate the microlens sampling function (a Dirac comb) Δd(h) with the distance
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Figure 3.3: Optical phase space illustration of resampling the captured radiance. (a)
Directly projecting the captured light field onto the refocus plane. (b)
Projecting the resampled light field onto the refocus plane.

function β(h) as: Δd(h) · β(h). To further simplify, we can factor d into γ(h) so that

γ(k) = Δ(k) · β ′(k). where β ′(k) has period a
d(a+b)

and Δ(k) has period 1.

Clearly γ(k) has minimum integer period equal to the least common integer

multiple of a
d(a+b)

and 1. We rewrite a
d(a+b)

as an irreducible fraction two integers

m
n
. Thus, S ′(k) has minimum integer period m = a

gcd(a,d(a+b))
, where gcd denotes the

greatest common divisor operator (Fig. 3.2(b)).

Note that the number of microlenses sharing a field of view also constrains the

number of distinct samples between pA and pB. Since the shift from one microlens

image to another for any point p on Π is Δ = d b
a
, we can compute the number of

microlens covering p as:

np = � d
Δ
	 = �a− f

f
	. (3.3)

Combining with Equation 3.2 we obtain that the resolution enhancement factor from

microlens image mi to Π is equal to min(m,np). Since b =
af
a−f

, this factor is controlled

only by a and f , namely, the depth of the scene and the camera optics.
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3.3 Demosaicing and Rendering on the Refocus Plane

Projecting samples of each microlens to the refocus plane Π gives us a higher

resolution image If . However, as shown in Fig. 3.3(a), when the captured light field

is transformed to Π for projection, as proposed by Georgiev et al. [41], the spacing of

each color component is not uniform on If , resulting in random RGB patterns (Fig.

3.4(a)). This issue creates trouble for demosaicing If . Therefore a crucial step of our

approach is to resample the light field with the parameterization of Πst to achieve

constant spacing on each dimension (Fig. 3.3(b)).

3.3.1 Resampling

We adopt a similar approach to that in [109], which was originally developed

for multi-frame single channel image restoration. We use a frequency-domain approach

to resample the 4D color filtered radiance. This simplifies to reconstructing a higher

resolution color image by perfect registration with an array of low resolution color

images taken at the same time in a 2D image restoration case.

Here we only consider the green rays. The other two channels can be computed

in a similar manner. Suppose we have q microlenses. Each microlens captures a low

resolution light field with Ns and Nu samples on each dimension. Let ro(s,u) be the

original green rays parameterized by Πst and Πuv. Given the distance a from Πst to

the microlens array, the registration of a recorded sub-light field ri can be computed

accurately as offsets σs, σu on each dimension respectively. Therefore, the sampled rays

by microlens mi is ri(s,u) = ro(s+ σsi,u+ σui). In frequency domain, this yields:

Ri(S,U)=ej2π(σsiS+σuiU)Ro(S,U) (3.4)

where Ro(S,U) and Ri(S,U) are CFT of ro(s,u) and ri(s,u) respectively. Let pixels

under mi capture ri with a uniform spacing (Ts, Tu), and Rdi(Ω) be the discrete Fourier

transform (DFT) of the rays recorded by ith microlens at frequency Ω = (ωs, ωu). From

the aliasing relationship between CFT and DFT,Rdi(Ω) satisfies the following equation:

Rdi(Ω)=K
∑
ms

∑
mu

(Ri(
ωs

NsTs
+msfs,

ωu

NuTu
+mufu)), (3.5)
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(b)(a)
Figure 3.4: Rendered results using (a) the approach proposed by Georgiev et al. [41]

and (b) our approach. The out of focus foreground objects exhibit RGB
patterns in (a) due to non-uniform spacing of color components after
integral projection.

where K = 1
TsTu

, and fs, fu are sampling frequencies on each dimension of all micro

images. All
∑

operators range from −∞ to ∞ and ms, mu are integers. Substituting

Ri from Equation 3.4 to Equation 3.5 yields:

VΩ = MΩRΩ, (3.6)

where VΩ is a q dimensional column vector with ith element equal to Rdi(Ω); Let

BS, BU be periodic boundaries of Ro such that Ro(S,U) = 0 for any condition of

|S| > BSfs, |U | > BUfu satisfies; RΩ is a 4BSBU dimensional column vector with the

kth element Ro(
ωs

NsTs
+γsfs,

ωu

NuTu
+γufu), and γs = kmod(2BS)−BS, γu = � k

2BS
	−BU ,

and MΩ is a q × 4BSBU matrix with (i, k)th element

1

TsTu
exp{j2π[σsi(

ωs

NsTs
+ γsfs) + σui(

ωu

NuTu
+ γufu)]}.

Since we know the locations of Πst and of each microlens mi, σsi and σui can

be accurately computed. Rdi(Ω) can be acquired by performing the 4D DFT on the

sampled light field by each microlens. Therefore Equation 3.6 is solvable for unknown

RΩ, which contains 2BS and 2BU frequency samples of Ro(Ω) on each dimension
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respectively. Combining all RΩ provides an estimate of Ro with 2NsBS, 2NuBU sam-

ples ranging from (−BSfs,−BUfu) to (BSfs and BUfu) with spacing ( 1
NsTs

, 1
NuTu

)

on each dimension respectively. We then use it to estimate ro(s,u) from (0, 0) to

((Ns − 1)Ts, (Nu − 1)Tu), with spacing ( Ts

2BS
, Tu

2BU
). Hence the resolution of the re-

sampled light field is increased by 2BS, 2BU on s and u compared with that of each

original microlens image.

3.3.2 Integral Projection and Demosaicing

As shown in Fig. 3.3 (b), with the previous resampling process, we can achieve

an evenly-sampled light field on the target focal plane Π. The integral projection is

immediately applied to get If . An example of the green channel of If is shown by Fig.

3.5(c). However, due to the higher sampling rate of the green channel, a demosaicing

process is still needed for red and blue channels of If to render a full RGB image with

the resolution of the green channel.

Traditional sequential demosaicing frameworks first recover a full resolution

green channel and subsequently use that green channel to facilitate the recovery of

red and blue channels. In our case, the full resolution green channel is already known

after the integral projection. Based on this green channel, the red and blue channels

are reconstructed by applying the state-of-the-art anisotropic adaptive filtering [67] in

the frequency domain. Fig. 3.4(b) shows that by employing the resampling scheme,

the demosaicing can be performed on the integral projection result and the final image

is free of RGB patterns.

Suppose the resampled light field has highest frequency ω′. The most common

situation is (∃i)[ω′ > 2ωi > ω]. In this case the new demosaicing process preserves

more high frequency information of the radiance, hence producing a higher resolution

image (Fig. 3.5). In other cases such as (∀i)[ω′ > ω > 2ωi] (very smooth regions

such as places with constant color), both processes recover the full light field and the

resolution of the resultant images are the same. If (∀i)[2ωi > ω′ > ω] (texture rich

regions or sharp edges), the final images are both over-smoothed.
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(a) (b) (c)

Figure 3.5: From (a)-(c), we compare the ground truth, the result using classical
approach, and the result using our approach. The frequency spectrums
are shown in the bottom row.

As illustrated by column (a) and (b) of Fig. 3.5, with the classical approach,

significant losses in high frequency components occur in texture-rich regions and the

rendered result suffers from over-smoothing compared with the ground truth. Column

(c) shows our method preserves much more high frequency information of the ground

truth, therefore capable of producing a higher resolution image.

3.4 Implementation and Applications

Fig. 8.1 shows the pipeline for implementing our proposed plenoptic demosaicing

and rendering scheme. We first resample the radiance, then integral project it onto the

spatial domain, and finally demosaic the color filtered result.

Our experimental data is captured by a plenoptic camera similar to that de-

scribed in [70]. We use a 39-megapixel sensor with pixel size 6.8 μm. The main lens is

mounted on the camera with a 13mm extension tube, which provides the needed spac-

ing to establish an appropriate distance from the main lens focal plane to the microlens
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Captured Radiance Rendered Image

Figure 3.6: Our plenoptic demosaicing and rending pipeline.

array. The focal length of the main lens and of each microlens are 80mm and 1500μm

respectively. The microlens pitch is 500 μm, which makes it work with the F-number

of the main lens. The distances between microlenses are 74 pixels.

3.4.1 Enhanced Dynamic Refocusing

We first test our resolution enhancement performance by synthesizing pho-

tographs with a shallow DoF. Fig. 3.7 shows the comparison of our approach (b)

and classical rendering (a) on a resolution chart scene. The bottom rows of (a) and

(b) compare the demosaiced and raw microlens images of three highlighted regions.

Note that severe aliasing effects appear on each raw microlens image and the structure

of the resolution chart is not visible. If demosaicing is performed directly on each

microlens image, colorful artifacts are introduced, damaging the high frequency infor-

mation and over-smoothing microlens images. As a result, these regions could not be

successfully reconstructed in the final image, as shown in (a). On the contrary, our

approach utilizes each aliased microlens image to resample a high resolution light field

before demosaicing is performed. Thus preserving a larger portion of high frequency

information and producing a higher resolution image, as shown in (b). Also note that

low frequency regions such as the left bottom part of the chart are equally clear in
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(a) (b)

Figure 3.7: Comparison of rendered image employing classical approach and our ap-
proach. (a) Classical approach. Top row: Rendered image. Bottom Row:
Demosaiced microlens image. (b) Our approach. Top row: Rendered im-
age. Bottom row: Raw microlens image.

both cases, and very high frequency regions such as the bottom of the red highlighted

region are both blurry.

The top row of Fig. 3.8 shows an outdoor scene. Apparently, the numbers on

the licence plate in (b) are not visible but readable in (c). Another visible artifact

of the classical framework here is that small regions of specular highlight appear less

shiny due to over-smoothing on each microlens image.

Another real scene is shown in the second row of Fig. 3.8. In column (b), the

first line of characters are barely readable using the classical rendering. Nevertheless,

they are clearly rendered with our approach. Note that colorful artifacts introduced

by demosaicing each microlens image remain on positions of “nf” and “ffi” in (b) and

ringing artifacts also appear around the edges of the characters. Furthermore, the

lower characters are totally blurry in (b) while still readable in (c).
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(a) (b) (c)

Figure 3.8: Comparison of three results with classical approach and our approach.
First and second row show shallow DoF rendering. The third row shows
extended DoF rendering. (a) Our rendered result. (b) and (c) are en-
larged highlighted regions in (a) with classical approach and our approach
respectively.

3.4.2 Extended Depth of Field

Another popular application of our method is the extended DoF photography.

Our approach pre-computes the depth of the sampled light field and renders each pixel

by choosing its own depth among samples automatically.

The third row of Fig. 3.8 shows our extended DoF application on the same

data as the second row. Note that the original out of focus regions such as the face

and hair of the person are brought into focus, as if the photograph is captured by a

pinhole aperture camera. However, with our framework, shown in (c), the rendered

result preserves more high frequency information than the classical approach shown in
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(b), therefore produces a much more detailed look.

3.5 Discussions and Limitations

We have presented a well-principled plenoptic demosaicing and rendering frame-

work, which preserves more high frequency information from the captured light field

and generates less aliasing artifacts compared with the classical approach.

Our framework does not apply demosaicing directly to the image captured by

the plenoptic camera. Instead, with a resampling scheme which helps achieve constant

spacing on each dimension, it dynamically performs demosacing after integral projec-

tion. Extensive experiments show that this framework could produce photographs with

commercially acceptable resolution.

As analyzed in Section 3.2.2, the resolution enhancement of each plane in the

scene achieved by our algorithm varies according to the depth of the plane. This could

cause unpleasant results if the resolution enhancements are low on planes of interests.

In the extreme case, the resolution could be as low as the classical framework. Like

classical plenoptic photography, our approach assumes the captured light field contains

thin rays in order to reconstruct a refocused image. This is also our assumption for

theoretical resolution enhancement analysis. i
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Chapter 4

ENHANCING THE ANGULAR RESOLUTION: LIGHT FIELD
TRIANGULATION

In this chapter, I present a light field triangulation technique for enhancing

the angular resolution of a captured light field. We first discuss the triangulation

concept and present why it is useful for angular super-resolution of light fields. We

then discuss the cons and pros of different light field triangulation schemes including

edge-constrained and surface-constrained Delaunay triangulations. In particular, we

study the geometric structure of 3D lines in the light field space and show that the light

field space is largely bilinear due to 3D line segments in the scene. As a result, directly

triangulating these bilinear subspaces leads to significant errors and visual artifacts.

We instead present a simple but effective algorithm to map bilinear subspaces as surface

constraints and apply Constrained Delaunay Triangulation(CDT).

4.1 Light Field Triangulation

4.1.1 Triangulation

In geometry, a triangulation is a subdivision of a geometric object into sim-

plices. In particular, in the plane it is a subdivision into triangles, hence the name.

Triangulation of a three-dimensional volume would involve subdividing it into tetrahe-

dra (”pyramids” of various shapes and sizes) packed together. In most instances, the

triangles of a triangulation are required to meet edge-to-edge and vertex-to-vertex.

A triangulation of a set of points P in the plane is a triangulation of the con-

vex hull of P , with all points from P being among the vertices of the triangulation.

Triangulations are special cases of planar straight-line graphs.
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(b)

(c)(a)

Figure 4.1: Triangulating a 2D light field (an EPI). (a) A scanline from a stereo
pair; (b) RG Delaunay triangulation (bottom) performs poorly on light
field super-resolution (top); (c) Using disparity as additional edge con-
straints, Constrained Delaunay triangulation significantly improves light
field super-resolution.

There are special triangulations like the Delaunay triangulation which is the

geometric dual of the Voronoi diagram. Subsets of the Delaunay triangulation are the

Gabriel graph, nearest neighbor graph and the minimal spanning tree.

Previous studies show that the light field space is largely linear: a 3D scene

point maps to a 2D ray hyperplane [130, 129]. This indicates that a light field can

be “triangulated”, i.e., the 4D light field can be partitioned into a set of space filling

and non-overlapping simplices. Each simplex is a piecewise interpolant of the light

field, hence the triangulation can be used for enhance the angular resolution. For a 2D

epipolar plane Image (EPI), the simplices are 2D triangles; for a 3D light field, they are

tetrahedra; and for the complete 4D light field, they are pentatopes. The triangulation

provides a natural anisotropic reconstruction kernel: any point in the space can be

approximated using a convex combination of the enclosing simplexs vertices (samples).

4.1.2 Simple Light Field Triangulation

The simplest light field triangulation is Delaunay triangulation without any

constraints, or regular grid (RG) triangulation. Given a regularly sampled light field,
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RG WarpB-CDTE-CDT

Figure 4.2: View interpolation using a triangulated 3D light field. We use the same
set of feature points for RG, E-CDT, and B-CDT (ours). B-CDT pro-
duces comparable results to image warping but preserves continuity (no
holes).

we can first build 4D hypercubes using two corners [s, t, u, v] and [s+1, t+1, u+1, v+1]

and then triangulate each hypercube. Let us consider a 2D light field, an EPI formed by

the same horizontal scanlines in a row of light field images. Fig. 4.1 (b) shows the RG

triangulation of the EPI. If we use this triangulation to super-resolve the light field,

i.e., by rasterizing the triangles, the result exhibits severe aliasing. This is because

RG triangulation is analogous to bilinear interpolation and does not consider scene

geometry (e.g., object depth or disparity).

4.1.3 Constrained Delaunay Triangulation

To improve RG triangulation, we can add epipolar constraints. Using stereo

matching, we can first estimate every pixel’s disparity and map it to a 2D hyperplane

[129, 84] as a constraint. In the 2D EPI case, each pixel maps to an edge where the

slope of the edge corresponds to its disparity (depth). We can then apply Constrained

Delaunay Triangulation (CDT) [97]. We call this scheme EPI-CDT or E-CDT. Fig.

4.1 (c) shows an E-CDT triangulation and its super-resolution result. Specifically, we

first detect 47 salient feature points along the scanline and add their corresponding EPI

constraints. Our triangulation applies CDT to all pixels with these edge constraints.
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Fig. 4.1 (c) show the closeup views of the triangulation. E-CDT greatly reduces

aliasing while providing a continuous interpolant.

4.1.4 EPI Super-resolution

4.2 High-Dimensional Triangulation

An apparent question is whether we can directly apply E-CDT to triangulating

higher dimensional light fields. The second column of Fig. 4.2 shows the E-CDT result

of two images forming a 3D light field from the Middlebury Venus dataset. Specifi-

cally, we detect 10, 132 feature points (6% of total pixel) and use their disparities as

edge constraints. We use the Tetgen [100] to conduct Constrained Delaunay Tetrahe-

dralization. To illustrate its quality, we synthesize a new intermediate view between

two source views by rasterizing the tetrahedralized 3D light field. The new view im-

proves RG at non-occlusion regions but exhibits strong aliasing near linear occlusion

boundaries.

4.2.1 Bilinear Ray Structures

We first briefly reiterate the ray geometry of 3D lines [129, 84]. If a 3D line l is

parallel to Πuv and Πst, we can represent it with a point Ṗ = [P x, P y, P z] on l and its

direction [γx, γy, 0]. If a ray r = [u, v, s, t] intersects l, there exist some λ1 and λ2 such

that

λ1[s, t, 0] + (1− λ1)[u, v, 1] = [P x, P y, P z] + λ2[γ
x, γy, 0]. (4.1)

It is easy to see that λ1 = P z, and we can obtain that all rays passing through l satisfy

the following linear constraint:

As+Bt + Cu+Dv + E = 0, (4.2)

where A = γy− γyP z, B = γxP z− γx, C = γyP z, D = −γxP z, E = γxP y− γyP x. This

reveals that lines in the 3D scene that are parallel to Πuv will map to linear subspaces

in the light field and hence can be triangulated.
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Figure 4.3: Bilinear ray structures. (a) A 3D line segment l maps to a bilinear
subspace in a light field; (b) l maps to a curve on a diagonal cut; (c)
Brute-force triangulation creates volume.

If l is not parallel to Πuv, it then can be directly parameterized by a ray under

2PP as [u0, v0, s0, t0].

All rays passing through l thus satisfy the following bilinear constraint:

λ1[s, t, 0] + (1− λ1)[u, v, 1] = λ2[s0, t0, 0] + (1− λ2)[u0, v0, 1]. (4.3)

We have λ1 = λ2 and

s− s0
u− u0

=
t− t0
v − v0

. (4.4)

The bilinear ray geometry is particularly important since a real scene usually contains

many linear structures unparallel to the image plane. This reveals that the light field

ray space contains a large amount of bilinear structures. In Fig. 4.3 (a), we construct a

3D light field by stacking a row of light field images and cut it using the videocube tool

[119]. Fig. 4.3 (b) shows a cut through a volume where 3D lines on the checkerboard

appear curved due to their bilinearity.

To analyze the cause of aliasing, let us consider a 3D line segment l whose image

is (lx1 , l
y
1) − (lx2 , l

y
2) in light field view (u, v). Assume the disparity of l1 and l2 are d1

and d2 respectively. If d1 
= d2, by Eqn. 4.4, l maps to a bilinear surface S formed by

four corners (u, lx1 , l
y
1), (u, l

x
2 , l

y
2), (u+1, lx1 + d1, l

y
1), and (u+1, lx2 + d2, l

y
2) in 3D (u, s, t)
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light field space. In geometric modeling, it is well known that any direct triangulation

of S from the four vertices of S will introduce large error: S is a surface that does not

occupy any volume. However, a triangulation of the four vertices will turn S into a

tetrahedron which will occupy large volume when |d1 − d2| is large, as shown in Fig.

4.3 (c). The tetrahedron will “erode” into neighboring space, i.e., nearby pixels will

be forced to use this tetrahedron as the interpolant. Therefore it is important to add

additional constraints onto the bilinear structure.

4.2.2 CDT with 3D Edge Constraints

We present a simple but effective scheme that directly maps bilinear ray struc-

tures of 3D lines into the CDT framework. Specifically, we apply a subdivision scheme

[81] by discretizing the bilinear surface into slim bilinear patches and then triangulate

each patch. Finally, we use edges of bilinear patches and disparity hyperplanes as

constraints for CDT. We call this scheme Bilinear CDT or B-CDT.

4.2.2.0.1 3D Light Fields.

For a 3D light field, B-CDT can be effectively implemented using Tetgen [100].

In the Venus example (first row of Fig. 4.2), we detect additional 303 line segments

in the reference view, subdivide their corresponding bilinear surfaces, and add them

as constraints for conducting B-CDT. The new triangulation significantly improves

the E-CDT result: it preserves most sharp edges and exhibits very little aliasing near

occlusion boundaries. Compared with image warping that results in missing pixels or

holes, the B-CDT provides a continuous representation of the light field where any new

view corresponds to a valid 2D triangulated light field without holes. Notice that the

texts on the newspaper are slightly blurred since they are not selected as constraints.

Fig. 4.2 row 2 shows our result on the Tsukuba dataset containing fewer linear

structures. In this example, we select 15, 748 feature points (14% of total pixel) from

the reference image and detect 120 line segments. Same as the Venus example, we

compare E-CDT and B-CDT by rendering an new view between the two reference
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views. E-CDT preserves non-boundary contents but exhibits strong aliasing near the

boundary pixels such as the tripod, the light edges, and the bust. In contrast, B-

CDT preserves both boundary and non-boundary contents. The Tsukuba scene has

a relatively large disparity range and direct warping produces many holes. To patch

these holes, one can use 2D interpolation schemes such as Delaunay triangulation.

Such interpolation, however, is different from B-CDT: B-CDT provides a consistent

triangulation throughout the light field volume while warping followed by hole patching

produces an ad-hoc triangulation on each slice; Further, B-CDT only needs to be

conducted once while hole patch needs to be conducted whenever rendering a new

view.

4.2.3 4D Light Fields

Finally, we extend the B-CDT scheme to 4D light fields. In computational

geometry, high dimensional CDTs [97] remains as an open problem for two reasons.

First, a plausible solution may require inserting a large number of auxiliary vertices.

This also occurs in 3D CDT although the number of inserted vertices is much smaller.

Second, the computational complexity grows rapidly with respect to dimensionality

[12]. To our knowledge, no practical 4-dimensional CDT is currently available to the

public. Our solution is to convert the 4D problem to 3D. Specifically, to synthesize a

new view Vst in the 4D light field with four sample views indexed as V00, V01, V10, V11,

we first detect 3D line segments and apply 3D B-CDT to synthesize two new views

Vu0 and Vu1 from 3D light fields V00 − V10 and V01 − V11, respectively. Next, we use

the same 3D line constraints and B-CDT to triangulate a 3D light field Vu0 − Vu1 for

synthesizing Vuv. Fig. 4.4 shows an skyscraper light field with disparity range [0,300].

Results using RG exhibit severe aliasing where directly warping produces holes and

discontinuity. Next, we select 90, 269 feature points (11% of total pixel) and 2092

line segments and apply the pseudo 4D CDT. Our results exhibits little aliasing while

preserving smoothness.
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Ground Truth RG Ours (B-CDT) Warp

V00 V01

V10 V11

Vuv

Figure 4.4: New view (central) synthesis from a 4D light field. Left: a light field of a
skyscraper scene. Right: Closeup views of the synthesized results using
different schemes.
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4.3 Discussions

We have presented a light field triangulation approach by imposing ray geometry

of 3D line segments as constraints. We utilize Constrained Delaunay Triangulation

(CDT) and by far our solution is restricted to 3D and pseudo 4D light fields since 4D

CDT is still an open problem in computational geometry.

The depth information of the feature points also plays a crucial rule in our

triangulation. In fact, an accurate depth map is also important for most state-of-

the-art light field reconstruction methods [17, 121]. To improve the current depth

estimation methods, in Chapter 5, we present two approaches.
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Chapter 5

LIGHT FIELD STEREO MATCHING

The core component in our light field angular resolution enhancement algo-

rithm is the availability of high quality disparity maps. In this chapter, I discuss two

approaches that use light field stereo matching for depth/disparity estimation.

5.1 Related Work

The availability of light field cameras has also renewed the interest on multi-

view reconstruction. The seminal work by Kolmogorov and Zabih [54] extend the

binocular graph-cut solution to multi-view stereo. In addition to the data and the

smoothness terms, they add an occlusion term for handling complex occlusions. How-

ever, the smoothness term in their method restricts local disparity variation, hence is

difficult to represent smooth disparity transition. To resolve this issue, Woodford et

al. [125] further incorporate the second order smoothness priors and optimize the non-

submodular objective function via Quadratic Pseudo-Boolean Optimization (QPBO)

[91]. Recently, Bleyer et al. [18] impose soft segmentation and minimum description

length as priors to solve for a non-submodular objective function. Georgiev et al. [40]

apply a window based algorithm for producing coarse disparity maps to guide digital

refocusing. More recently, Wanner and Goldlücke [92, 121] apply structure tensor to

measure each pixel’s direction in 2D EPI. They then encode the estimated edge di-

rections into dense stereo matching with consistency check. However, their local EPI

structure estimation is robust for disparities within a small range. Moreover, most

previous algorithms do not explicitly consider or aim to preserve the 3D geometry such

as 3D lines.
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5.2 Occlusion Aware Disparity Estimation

One of the most challenging problems in light field stereo is the occlusion. To

robustly resolve this, we first analyze the behavior of pixels in such situations. We

show that even under severe occlusion, one can still distinguish different depth layers

based on statistics. We estimate the disparity of each pixel by discretizing the space

in the scene and conducting plane sweeping. Specifically, for each given disparity, we

gather all corresponding pixels from other views and model the in-focus pixels as a

Gaussian distribution. We show how it is possible to distinguish occlusion pixels, and

in-focus pixels in order to find the disparities. To estimate the scene disparity based

on the captured light field image, we consider the behavior of a pixel p00 in a view V00

of the light field image. This pixel can map to pixels in different views when assigned

with different disparities.

5.2.1 No occlusion

Assuming all surfaces in the scene are Lambertian. As shown in Figure 5.1 (a),

if p00 is assigned the correct depth d, it maps to a point P on a surface. All rays

emitted from P have constant color. Therefore, rays captured by any other view Vuv

at pixel pst will have the same color as p00. On the other hand, if incorrect depth d′ is

assigned to p00, then the corresponding pst will tend to have different colors than p00.

With this observation, when assigning a disparity d to a pixel, we model the

distribution of color over all pixels from different views as a unimodel Gaussian dis-

tribution to further compensate for the vignetting effect and camera noise. And the

variance of the distribution defines the possibility of the p0 actually lying on d. It is

computed by:

Vp00,d =

∑
(Ip − Ī)2

N
, (5.1)

where Ip is the intensity of p, N is the number of pixels associated by mapping p to

other views with disparity d, and Ī is the mean of intensities of all associated pixels.
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Figure 5.1: Color sampled by cameras without (a) or with (b) occlusion.

If Vp00,d is small, meaning all the pixels have almost the same color, the probability of

p00 having disparity d is high, and vice versa.

5.2.2 Disparity Estimation with Occlusion

Consider Figure 5.1 (b), where some of the views looking at P ′ are occluded. In

this case, even with a correctly assigned disparity, due to occlusion, some rays emitted

from the front surfaces replace the correct rays from the back surface, resulting in high

variance in our Gaussian model.

To resolve this issue, Yu et al. [131] assume occlusion surfaces have similar color

and model the problem with a bimodel Gaussian distribution. One can easily extend

this approach to a N-model Gaussian distribution but deciding N is rather difficult.

However, having similar color on all occlusion surfaces is a rather extreme assumption.

Moreover, under a small number of views, sometimes there are not enough pixels to

form Gaussian distribution. The state of the art globally consistent depth labeling

method [92] proposed global labeling constraints on epipolar plane images (EPI). But

it requires a a small disparity range (usually less than 3 pixels) in order to estimate

local direction on the EPI. Therefore it does not fit our sparse sampling situation.

However, to show the robustness of our algorithm, we still compare our result with this
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algorithm by providing more views.

Next, we analyze the distribution of pixel intensities. In the regular case, images

of P are still captured by some of the views. In this case, the Gaussian distribution

still holds, but with noise around the region far from the mean. It is possible to

explicitly separate out the occlusion samples or implicitly model this distribution as

N-modal. However, in the extreme case where most samples are from occlusion surfaces,

it is almost impossible to tell which samples are from the in-focus plane with a single

observation.

Instead of trying to point out which samples are outliers directly from a single

observation under a given disparity, we propose to iteratively mask out the layers that

are in front of P . For each iteration it, we still loop over all the disparity values to

check for the minimum variance for each pixel. The difference is that starting from

the second interaction, we make use of the current disparity map and when testing

disparity dit on P , we ignore pixels that have larger disparity than dit.

Now we analyze this idea in detail. Assuming that the depths in the scene

are corresponding disparities ranging from dmax to dmin, and that there are sufficient

number of views to form different distributions when assigned with different disparities.

It is also reasonable to assume that if all the occlusion pixels are masked out, the

intensity distribution will achieve minimum variance at the correct disparity value. In

the first iteration, we can successfully find the local minimum for the closest depth

since no occlusion will occur on those pixels.

In the next iteration, we mask out those pixels when computing the depth for

all pixels since they are considered as occlusions. Note that pixels not at dmax may

also be assigned disparity dmax during the first iteration due to occlusion problems.

However, by masking out all the pixels assigned with dmax, our algorithm guarantees

that no pixels from dmax will affect the converges of pixels at dmax−1. Therefore during

the second iteration, all pixels on dmax−1 will be computed under with no occlusion

involved.

Now we prove that in each iteration, our estimation is occlusion free.

48



Iterative Process

Input Image Assign Max
Disparity

Disparity
Estimation

Mask Max
Disparity

Image Mask/
Graph Cuts

DisparityMap

Figure 5.2: Our disparity estimation pipeline.

Base case. In iteration 0, all the depth are computed directly using the unimodel

Gaussian distribution. In this case, all the pixels on dmax will be marked out correctly.

Induction. Suppose in iteration n, disparities larger than dmax − n are all com-

puted correctly, in iteration n+1, we ignore pixels with disparities larger than dmax−n.
So that pixels with dmax − (n + 1) can be computed with no occlusion involved.

5.2.3 Avoiding the trivial solution

However, as mentioned above, at each iteration it, pixels lying further than

dit could be incorrectly assigned with dit due to unresolved occlusion. In this case,

unnecessary pixels may get masked out, so that with by assigning a small disparity,

trivial solutions with small variance could be produced for pixels on textureless surfaces.

We propose two solutions to resolve the trivial solution: 1) using the boundary pixels

to regulate the textureless pixels (global optimization); 2) using a edge mask to ignore

the pixels on the surfaces in a later iteration (edge mask).

5.2.3.1 Edge Mask

The edge mask aim to mark the edge region. To resolve the issue of trivial

solution, in each iteration, we only recomputed the disparity of the edge region and do

not touch the regions which have been masked. Figure 7.9 illustrates our processing

pipeline using edge mask approach. To compute the edge mask, consider one pixel

in a given view. For each given disparity assumption, we gather all corresponding

49



pixels from other views and model the in-focus pixel value as a Gaussian distribution.

We compute the variance for each trial disparity. This gives us the maximal variance

Vmax and minimal variance Vmin at that particular pixel. We choose the disparity for

a given pixel to be the one with minimal variance. We also compute the quantity

M = Vmin/Vmax. The value of M at each pixel gives us a chance to estimate depth

edges. We then sort the pixels by M and select top 30% of them as the edge pixels for

further computation.

5.2.3.2 Global Optimization

Constant color surfaces in the scene are always a problem since it is difficult

to estimate disparities directly from them. Traditional global optimization methods

such as graph cuts or belief propagation use a smoothness constraint to compensate

for this issue. We embed our algorithm into the graph cuts framework and let the

smoothness constraint to resolve the trivial solution issue. Specifically, in each iteration,

we minimize the energy function by constructing a graph with data term (variance of

pixel intensities) as the links to source/target and smoothness term (disparity difference

between neighboring pixels) as links to neighboring pixels. In this case, even though

the textureless pixels may tend to choose small disparity, the pixels on the edge will

force them to choose the correct disparity since the variance of trivial solution and

of the correct disparity are similar. We reuse min-cut/max-flow algorithm [54, 52] to

minimize the energy function. Note that the data term in our case is occlusion free

because we do not consider pixels with depth lower than the current depth.

5.2.4 Experiments

All experiments were conducted on a PC with Intel Core i7 3.2GHz CPU and

8GB memory. The second row of Fig. 5.11 and Fig. 5.4 show the disparity maps

of the captured light fields of a camera scene and a hand scene using our method with

edge mask (EM), global optimization (GO) and brute force graph cuts (GC). On the

third row, we render the disparity map using the light field rendering. GC has very
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Input Image

Edge Mask (EM) Global Optimization (GO) Graph Cuts (GC)

Rendered

Rendered Depth (EM) Rendered Depth (GO) Rendered Depth (GC)

Figure 5.3: Estimated disparity map using different methods based on the input
integral image of the camera scene.
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Input Image Rendered

Edge Mask (EM) Global Optimization (GO) Graph Cuts (GC)

Rendered Depth (EM) Rendered Depth (GO) Rendered Depth (GC)

Figure 5.4: Estimated disparity map using different methods based on the input
integral image of the hand scene.
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noisy occlusion boundaries such as edges of the belt in Fig. 5.11 and the edges of

the hand in Fig. 5.4 due to the the severe occlusion conditions. In contrast, GO and

GC both accurately recover fine details and robustly handle the occlusion boundaries.

However, the result of EM appears a little bit more variant on surfaces with constant

disparity but GC better preserves the smoothness of surfaces.

5.2.4.1 Synthesizing novel views

(a) (b)

(c)  (d) 

Figure 5.5: Different applications using the estimated disparity. (a) Input views
(captured integral image). (b) Synthesized views. (c) Rendering using
input views. (d) Rendering using synthesized views.

Figure 5.5 (b) shows our result of using disparity estimated from the input

integral image to synthesize arbitrary views representing a new, denser integral image

with more views. Given the input image of 25×25 views of a girl scene, we synthesize a

new integral image with 25× 25 views that are concentrated in the central area. With
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Input Image Rendered Translucent Pixels

Figure 5.6: Translucent pixels appear near occlusion boundaries in the captured im-
age.

the correctly estimated occlusion boundaries, we are able to faithfully recover the edges

of the arm, wrinkles on the shirt on the foreground and thin branches and leaves of the

trees, cover of the bee hives in the background. Note that our boundaries sometimes

appears to be noisy. This is because of our algorithm assigns a single disparity value

for each pixel and is not capable of handling translucent pixels on the edges. We will

discuss this issue in Section 5.2.5.

5.2.4.2 Rendering aliasing reduced images

Aliasing in the rendered image is usually caused by under-sampling of the light

field. To conduct anti-aliasing, we use our estimated disparity for the light field to

synthesize a densely sampled light field of 100×100 views. We then render the dynamic

depth of field effect using the new light field. As shown in Figure 5.5 (d), compared

with the result using the original captured light field, when focusing on the foreground,

we are able to greatly reduce the aliasing artifacts on the background and simulating

a D-SLR quality image.
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5.2.5 Discussions

It is known that boundary pixels require matting to resolve the translucency.

Since our algorithm explicitly defines one disparity for each pixel, the disparities for

the translucent pixels could not be correctly computed. As shown in Figure 5.6. It is

our immediate future work to explore a model of multiple disparities per pixel in our

algorithms.

In our edge map algorithm, the threshold for the edge map is empirically defined.

In the future, we plan to analyze the statistics of the image and automatically choose

the thresholds.

5.3 Line Assisted Light Field Stereo Matching

Our second algorithm is based on the observation that man-made scenes contains

large number of linear structures that can be used as useful constraints/priors in the

stereo matching process.

5.3.1 Disparity Interpolant

We first prove the linearity of disparity along a line segment, i.e., given two

endpoints l1 and l2 of a 3D line segment l with disparity d1 and d2, the disparity dk

of any intermediate point lk = λkl1 + (1− λk)l2 is λkd1 + (1− λk)d2. This property is

well known, e.g., in perspective geometry in computer vision and in projective texture

mapping in computer graphics. We present a different proof based on bilinear ray

geometry of line l.

If l is parallel to Πuv and Πst, then the proof is trivial since d1 = d2 = dk.

If l is not parallel to Πuv and Πst, l can be represented as a ray (s0, t0, u0, v0).

Consider a specific pixel (s, t) in camera (u, v) that observes a point P on line l and

pixel s+Δs in a neighbor camera (u+Δu, v) that also observes P . Both ray (s, t, u, v)

and (s+Δs, t, u+Δu, v) satisfy the bilinear ray constraint (Eqn. 4.4):

s+Δs− s0
u+Δu− u0

=
s− s0
u− u0

=
t− t0
v − v0

. (5.2)
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Therefore, Δs
Δu

= t−t0
v−v0

. This reveals that disparity Δs
Δu

is a linear function in t along l,

i.e., we can linearly interpolate the disparity along l.

5.3.2 Line-Assisted Graph Cut (LAGC)

To incorporate the linear disparity constraint into multi-view stereo matching,

the most direct approach is to first detect line segments in the captured light field, then

estimate their disparities, and use them as hard constraints in the graph-cut algorithm.

The top row of Fig. 5.7 shows the result of this brute-force approach on a city scene.

We render a light field of the scene (17×17 views at 1024×768 resolution). We detect

line segments using the state-of-the-art line segment detector (LSD) [120] for each view

(around 1100 × 17 × 17 line segments). For the endpoints of each line segment l, we

iterate over all possible disparities and interpolate the disparity for all intermediate

points. Finally, we find the optimal disparity assignments to the endpoints that yield

to highest consistency of all intermediate points. The results are then used as hard

constraints for the multi-view graph-cut (MVGC) [54]. Fig. 5.7 shows improvements

near edges and rich texture regions compared with MVGC. However, if the disparity

of the line segment is incorrectly assigned, it will lead to large errors, e.g., on one of

the chimneys on the building, as shown in Fig. 5.7.

Next, we study how to explicitly encode the disparity constraint of line segments

into MVGC. MVGC aims to find the optimal disparity label that minimizes the energy

function Econventional = Edata + Esmooth + Eocc,where

Edata =
∑

P,QEd(P,Q), Ed(P,Q) = ||I(P )− I ′(Q)||2 −K,

Esmooth =
∑

P,PN∈N Es(P, PN), Es(P, PN) = min(||dP − dPN
||, Tc),(5.3)

where P and Q correspond to the same 3D point given a disparity, N is the

neighborhood of P , Tc is the truncation threshold, and K is a constant. The occlusion

term Eocc measures if occlusion is correctly preserved when warping the disparity from

I to I ′ [54].
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Reference MVGC Hard Constraint

Figure 5.7: Encoding 3D line segments as hard constraints improves MVGC but
misses important details, e.g. the chimney on the building.

We add the fourth line constraint term. Our key observation is that when

assigning disparity labels to the two endpoints, every intermediate point along the line

should check occlusion consistency. Specifically, given the two endpoints (pixels) li and

lj of line segment l and an intermediate pixel lk = λkli + (1− λk)lj, we define

Eline =
∑

l

∑
lk∈[li,lj ] El(li, lj, lk),

El(li, lj, lk) = ||λkdli − dlk + (1− λk)dlj ||. (5.4)

Our goal is to minimize the new energy function Econventional + Eline.

The work by Boykov et al. [20] and Kolmogorov and Zabih[52, 54] show that

one can minimize Econventional by consecutively solving the two-label problem: at each

iteration, a new disparity label is added and the algorithm decides whether each pixel

should keep the old disparity or switch to the new disparity. We follow their convention

to use 0 for keeping the old label and 1 for using the new label. To solve for the two

label problem with alpha-expansion [20], the energy function needs to be regular. For

example, Edata, Esmooth and Eocclusion (the two-variable functions) are all regular.

Notice that Eline (Eqn. 5.4) is a three-variable (F3) term, i.e., the endpoints

and any intermediate point individually choose to relabel or not. Eline can be viewed

as a general second order smoothness prior and is generally non-submodular. There-

fore, alpha-expansion is not directly applicable to minimize Eline. We instead adopt

the extended QPBO approaches proposed by Rother et al. [91]. To briefly reiter-

ate, the QPBO algorithm [51] splits each node in the graph into two subnodes; when
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(a) (b) (c) (d)

Figure 5.8: Comparison using different optimization schemes. (a) alpha-expasion.(b)
QPBO-I. (c) QPBO-P (d) Reference Image.

both subnodes are assigned to the source or sink after min-cut, they will be assigned

the corresponding label. Otherwise, they will be treated as unlabeled. Theoretically,

QPBO can potentially result in a large number pixels assigned unlabeled. Extensions

of QPBO such as QPBO-P and QPBO-I [19, 91] as well as the more complex QPBO-R

[125] can be further used to reduce the unlabeled pixels. For example, QPBO-I uses

additional geometry priors (called the proposals) to improve optimization.

Recall in our problem, only pixels on 3D line segments (edges) can be potentially

assigned unlabeled. Since they are generally sparse for natural scenes (for example,

the number of non-submodular terms in all our experiments are around or under 10%

of the total terms), we find that QPBO-P and QPBO-I are generally sufficient. For

example, in QPBO-I, we use fronto-parallel surface priors as proposals. Fig. 5.8 shows

the results on the city scene using QPBO-P, QPBO-I (with fronto-parallel surfaces as

proposals), and standard alpha-expansion. QPBO-P and QPBO-I produce comparable

results while alpha-expansion produces noticeable artifacts such as inaccurate edges.

5.3.3 Graph Construction

Next, we construct the graph so that we can reuse min-cut/max-flow algorithm

to minimize our F3 energy function. We follow the general-purpose graph construction

framework by Kolmogorov and Zabih [53]: each pixel corresponds to a graph node.

We then add the source s node for label 0, the sink node t for label 1, the t-links
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from the graph nodes to s or t, and the n-links between the graph nodes using 4-

connectivity. We decompose the two variable term Ed and Es to the corresponding t-

links and n-links. For example, for two neighboring nodes ni and ni+1, we assign weights

Es(1, 0)−Es(0, 0) and Es(1, 0)−Es(1, 1) to t-links (s, ni) and (ni+1, t) respectively, and

weight Es(0, 1) +Es(1, 0)−Es(1, 1)−Es(0, 0) to n-link (ni, ni+1). The similar scheme

can be applied for handling Eocc.

Different from Es and Eocc, El is F3 and auxiliary nodes and links need to be

added to the graph [53]. Specifically, for each edge tuple (li, lj, lk) (i, j the endpoints

and k the intermediate point), we add three auxiliary n-links (an-links) li − lj , li − lk

and lk− lj , as shown in Fig. 5.9 (b). We also add an auxiliary sink/source node n∗
k and

the corresponding auxiliary t-links (at-links) using one of the two possible assignments:

either (li, n
∗
k), (lj , n

∗
k), (lk, n

∗
k), and (n∗

k, t) (Group at1) or (n
∗
k, li), (n

∗
k, lj), (n

∗
k, lk), and

(s, n∗
k) (Group at2), as shown in Fig. 5.9 (c). The selection of the group depends on

the weight decomposition of El. Specifically, we follow the decomposition in [53] and

edge assignment schemes for F3. Here we briefly reiterate this process. There are two

possible decompositions of El. We first compute p = (a+ d+ f + g)− (b+ c+ e+ h).

If p ≥ 0, El can be decomposed using the upper branch of Table 5.1. We then assign

the weights to edges as follows: 1) assign p to all four at-links in group at1; 2) Assign

p1, p2, p3 to t-links for li, lj , and lk respectively, and finally assign p12, p23, p31 to an-links

(ni, nj), (nj , nk), and (nk, ni). If p > 0, we can decompose the table in a similar fashion

as shown in the lower branch of Table 5.1 and assign the weights to edges accordingly.

We call our solution the line-assisted graph-cut (LAGC).

5.3.4 Evaluation

All experiments were conducted on a PC with Intel Core i7 3.2GHz CPU and

8GB memory. We first evaluate our algorithm on binocular stereo using the Tsukuba

dataset. Fig. 5.10 compares the ground truth, global stereo reconstruction under

second order smoothness priors (SOSP) [125], adaptive ground control point (GCP)

[98] (rank 1 for all four Middlebury datasets [29]), MVGC [54], and our LAGC. Table
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El = = =

A +

0 0

+

0 0

+

0 p3

+

0 p23

+

0 0

+

0 0

+

0 0 p1 = f − b p23 = b+ c− a− d

0 0 p2 p2 0 p3 0 0 0 0 p12 p12 0 0 p2 = g − e p31 = b+ e− a− f

E(0, 0, 0)E(0, 0, 1) a b p1 p1 0 0 0 p3 0 p23 p31 0 0 0 0 0 p3 = d− c p12 = c+ e− a− g

E(0, 1, 0)E(0, 1, 1) c d p1 p1 p2 p2 0 p32 0 0 p31 0 0 0 0−p p = (a + d+ f + g)− (b + c+ e+ h) ≥ 0

E(1, 0, 0)E(1, 0, 1) e f

E(1, 1, 0)E(1, 1, 1) g h

H +

p1 p1

+

p2 p2

+

p3 0

+

0 0

+

0 p13

+

0 0

+

p 0 p1 = c− g p32 = f + g − e− h

p1 p1 0 0 p3 0 p32 0 0 p13 0 0 0 0 p2 = b− d p13 = d+ g − c− h

0 0 p2 p2 p3 0 0 0 0 0 p21 p21 0 0 p3 = e− f p21 = d+ f − b− h

0 0 0 0 p3 0 p32 0 0 0 0 0 0 0 p = (a + d+ f + g)− (b + c+ e+ h) < 0

Table 5.1: We follow the F3 decomposition scheme from [53](Table 7 and 9) for El
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Figure 5.9: Graph construction for our LAGC algorithm. (a) The conventional graph
for two-view stereo matching.(b) For a line segment (pink), we add aux-
iliary n-links (green). (c) We also add an auxiliary node n∗

k and auxiliary
t-links (dark blue).

5.2 lists the percentage of bad pixels and the ranking (in subscripts) for each method.

Compared with MVGC, LAGC effectively reduces errors and outranks MVGC (13 vs.

35 for non-occlusion, 14 vs. 38 for boundary, and 14 vs. 50 for all pixels). LAGC also

preserves edges such as the feet of the table and the tripod and the arm of the lamp.

Next, we apply LAGC to the light field datasets. We compare our scheme

with the recent globally consistent depth labeling (GCDL) scheme using the source

code posted by the author [92]. We first test on a synthetic light field of a city scene

composed of one million triangles. We render the scene using the POV-Ray ray-tracer

60



Reference Image

SOSP GCP MVGC

Ground Truth LAGC

Figure 5.10: Stereo matching on the Tsukuba dataset. Our LAGC outperforms
MVGC [54] and SOSP [125] but is slightly worse than GCP [98]. How-
ever, it better preserves edges, e.g., the left foot of the tripod. See Table
5.2 for numerical comparison.

[86] to generate an array of 17× 17 images, each with a resolution of 1024× 768. The

scene has a disparity range from 0 - 16 pixels. Notice that the city scene exhibits

repeated line patterns. Certain regions lack textures while the others contain complex

textures. The scene hence is challenging for classical stereo matching. For this and the

following examples, we fine-tune the parameters for both algorithms and compare only

their best results.

The top row of Fig. 5.11 compares the disparity maps computed by GCDL and

LAGC. GCDL misses fine details such as the contours of the chimneys and is highly

Algorithm non-occlusion all discontinuity

LAGC 1.0013 1.4114 5.3914

MVGC 1.2735 1.9950 6.4838

SOSP 2.91103 3.5692 7.3357

GCP 1.0314 1.295 5.6016

Table 5.2: Stereo matching using LAGC, MVGC [54], SOSP [125], and GCP [98] on
Tsukuba. We show both the percentage of bad pixels and the algorithm’s
ranking (in subscripts)
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noisy on surfaces with rich textures. Its error is also larger on distant buildings. In con-

trast, LAGC accurately preserves most fine details and robustly handles both distant

and close objects. Although a real scene may not contain as many linear structures,

our result demonstrates that LAGC is robust enough to handle such complex scenes.

We then experiment on real light field data. Fig. 5.11 row 2 shows the com-

parison on the Stanford Lego Gantry dataset [112] composed of 17 × 17 views at a

resolution of 1280× 960 of a Lego gantry crane model. The disparity range is between

−3 to 5 pixels and we discretize it into 16 labels. On continuous regions such as the

ground, LAGC produces much smoother disparity transitions whereas the result from

GCDL contains large discontinuities. LAGC is particularly good at preserving edges,

as shown on the hoist rope from the crane, the contours of the headlights and windows,

etc. Fig. 5.11 row 3 shows the amethyst dataset which is expected to be challenging to

LAGC: it lacks long linear structures but contains strong view-dependent features. The

disparity range is small, from −3 to 3 pixels. We consider subpixel disparity with step

size 0.2. LAGC can robustly handle this challenging scene and slightly outperforms

GCDL, e.g., by better preserving the facets of the amethyst.

Finally, we test on a real light field acquired by the Lytro camera [71]. Lytro

uses an array of 328 × 328 microlenses, each with 10 × 10 pixel resolution. We first

resample the light field to a 17 × 17 light field at 800 × 800. The disparity range is

ultra small (between −1 to 1 pixels). We discretize the disparity range using 0.2 step

(10 disparity label). Notice that GCDL is originally designed to process the Raytrix

data [89] that usually have a much larger disparity range. Although it uses subpixel for

evaluating the structure tensor, directly applying GCDL on the Lytro data still results

in poor disparity estimation (Fig. 5.11 row 4). LAGC, however, produces a better

quality disparity map despite structure and texture similarities across the scene.

5.3.5 Discussions

We have presented a stereo matching framework by imposing ray geometry of

3D line segments as constraints. We have experimented on synthetic, pre-acquired
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Reference Image LAGC GCDL

Figure 5.11: LAGC vs. GCDL [92] in light field. From top to bottom: a city
scene light field (17 × 17 × 1024 × 768) rendered using POV-Ray, the
Stanford Gantry light field (17× 17× 1280× 960) and Amethyst light
field (17×17×768×1024), and a real light field captured by Lytro [71]

.
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light field, and Lytro acquired light fields. An important following step is test our

scheme on the Raytrix data which have a larger disparity range. In addition, given

the increasing interest in light field imaging and the availability of commercial light

field cameras, we also plan to build a light field stereo benchmark analogous to the

Middlebury Stereo Portal [29], for evaluating light field stereo matching algorithms.

Finally, it remains an open problem on how to handle view-dependent objects in both

binocular and multi-view stereo. In the future, we will investigate robust algorithms

for detecting and reconstructing these objects via light field analysis.
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Chapter 6

UNIFIED SPATIAL ANGULAR ENHANCEMENT VIA LIGHT FIELD
QUILTING

In this chapter, we present a high-dimensional image based rendering technique

which takes multiple light fields as inputs and generates new light fields as outputs.

We call our technique the ”Light Field Quilting”.

Our technique can be regarded as a general case of traditional image based

rendering which aims to use a dense set of 2D images in place of 3D geometry to

render a novel 2D view of the scene. To draw analogy from light field quilting to image

based rendering, first, we interpret the image based rendering in the context of light

field ray space.

In the ray space, a 2D image can be treated as a light field with only one angular

sample for each spatial sample. For clarity, we call this kind of light field the 2D spatial

light field. Therefore, traditional image based renderings aim to construct novel 2D

spatial light fields by fusing multiple 2D spatial light fields using certain geometry

proxies. The geometry proxy is crucial to the ray structure of the final 2D spatial light

field. For example, a planar geometry leads to perspective panoramic views of the

scene [80, 99, 4], a spherical geometry leads to a multi-perspective panoramic views of

the scene [4], and the geometry of scene itself leads to novel views of the scene [64, 42].

Despite the exiting results, the final 2D spatial light field is limited by its sparsity on

the angular sampling hence is always a static 2D image.

The recent advances of light field cameras allow us to easily take multiple 4D

light fields towards the scene. With such a huge advantage, our technique takes a set of

4D light fields as inputs and produces novel 4D light fields depending on user defined

hyper-geometry proxies in the light field space. Since the input light fields have denser
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Figure 6.1: Our spatial quilting stitches 4 light fields (top row) captured by a rotating
Lytro camera into a single wide FoV light field. The white circles show
the enlarged red highlighted region of the light field images. The second
row shows the EPIs (u, x slices) of each individual light field. The third
row shows the shallow DoF renderings focusing at background sculpture
(left) and foreground plants (right). The bottom row shows the quilted
EPI based on the 4 EPIs on the second row.
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angular samples, the result light field is no longer restricted by the angular limitation.

Therefore, with this new technique, we can produce novel effects such as panorama

with dynamic DoF, panorama with parallax, and novel views with larger parallax and

shallower DoF.

Our technique is consisted of two key components: light field registration and

light field stitching. To register two light fields L and L̃, similar to 2D image registra-

tion, we assume that L lies on a 5D hyperplane and we can project L̃ onto L with a 5D

homography matrix. To estimate this matrix, we conduct correspondence matching

of the scale invariant feature transform (SIFT) image features and then compute the

optimal 5D homography matrix that minimizes difference of rays in the overlapped

light field. Next, we use the homography matrix to warp L̃ to the L and seek to quilt

through the overlapping region. This is also analogous to image stitching in synthe-

sizing 2D panoramas from images. The key difference though is that we are dealing

with a higher dimensional light field space. Specifically, to compute a cut in the over-

lapped subspaces, we build a 4D light field graph and apply graph cut optimization to

locate the optimal quilting paths. Since light fields are high dimensional, brute-force

implementation for computing the cuts can be extremely slow. We therefore employ a

coarse-to-fine scheme [6]: after we compute the cut of the graph at a coarse level, we

upsample the graph but prune unnecessary nodes by using the estimated coarse cut.

We demonstrate the approach for enhancing the light field resolution at different

dimensions. For example, we can create a wide horizontal FoV light field from a series

of light fields captured by rotating the Lytro camera on a tripod. We can also create

an ultra-high spatial resolution light field using an array of Lytro cameras. The same

structure allows us to increase the size of the virtual aperture and hence the bokeh.

Finally, we can increase the parallax between light field views by orbiting the Lytro

camera around the object of interest.
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6.1 Related work

Our light field quilting work is related to earlier work in image-based modeling

and rendering, classical image stitching, and the emerging light field superresolution

research and classical image stitching.

6.1.1 Image-based Modeling and Rendering

Our technique can be viewed as image based rendering on a higher dimension.

The major differences are: 1) We take 4D light fields as inputs. 2) We use 5-dimensional

geometry proxies for light field projection instead of 2D ray projection. 3) We get novel

4D light fields as outputs. Similar to the image based rendering, our geometry proxies

can be predefined or estimated, depending on different scenarios. In the applications

of this paper, we explore using a 5D hyper plane as the geometry proxy.

Light Field Rendering and Lumigraph In computer graphics and computer vision,

image-based modeling and rendering aim to generate a 3-dimensional model and then

render novel views of this scene based on a set of 2D images of a scene. Even though the

idea is old, it well represents the concept of recording and manipulating rays flowing in

the scene for purposes such as synthesizing new views. For example, the main use of

light fields in the very beginning is to synthesize new perspective views by performing

2D slices in the recorded 4D ray space [64]. In the ray space, the slicing approach

can be interpreted as projecting the captured rays onto a 3D planar surface. However,

rays coming from scene points out of this plane will appear as aliasing artifacts on

the final result. To ameliorate this effect, Levoy et al. [64] and Davis et al. [30]

resorted to pre-filtering of the light field with different kernels. The lumigraph [42]

also relies on a dense set of views of the scene coupled with the scene geometry for

constructing novel views. Gortler et al. [42] and Buehler et al. [24] resolved this issue

by projecting the rays onto the given 3D scene geometry. Overall, most image based

rendering approaches require certain geometry proxies for image construction.
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Our work in many ways resembles the image and video stitching techniques for

synthesizing panoramic images or videos. In particular, our light field quilting can be

treated as finding the best seam among the given 4-dimensional spaces, a general case

of most, if not all, 2D and 3D problems.

1D and 2D Panorama 1D and 2D panoramas mainly aim to synthesize a wide FoV

image of the scene based on multiple captured views. There exists many approaches for

generating 2D panoramas. 2D rotational panorama [107, 126, 44, 105] and its variants

such as strip panorama [4], pushbroom panorama [95], X-slit panorama [138], etc. have

been extensively studied over the past few years. Recently, Sargent et al. [83] proposed

an impressive system to deal with the challenges of accessing appropriate parts of the

gigapixel video as one pans and zooms.

3D Panorama 3D panorama aims to increase the spatial resolution on a 3D data such

as stereoscopic images and videos. On the angular domain: Peleg et al. [80] proposed to

generate omnistereo panoramas by mounting the camera on a rotating arm. However,

this strategy suffers from visible seams and vertical parallax. More recently, Richardt

et al. [90] proposed a solution for generating high quality stereoscopic panoramas.

They first described robust solutions to correct issues such as perspective distortion

and vertical parallax on the input images. Next, they apply an optical-flow-based

technique to reduce aliasing during the stereo panorama generation. While generating

impressive results, their method requires accurate optical-flow estimation, which is

inconvenient to acquire in many scenes. On the time domain: Kwatra et al. [58]

applied graph cuts in 2D and 3D to perform video texture synthesis in addition to

regular image synthesis. Agarwala et al. [6] showed how to amend panoramic imagery

with video textures such as water waves and blowing leaves to enliven content. Rav-

Acha et al. [88] used a sweeping video to create a panoramic video of, for example,

a very wide waterfall, by allowing time to vary across the panorama. Couture [26]

proposed to generate loopable panoramic stereo videos with a pair of commodity video
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Figure 6.2: Top row: a region of the result by Panorama light-field imaging [16].
Bottom row: the enlarged highlighted regions. Note that there exists
severe boundary bleedings of the defocus regions which makes the result
look artificial.

cameras. Their method uses full frames rather than slits and uses blending rather

than smoothing or matching based on graph cuts. However, their results suffer from

ghosting artifacts.

Light Field Panorama Closest to ours is probably the work by Birklbauer and

Bimber [16] that stitches multiple light fields into a panoramic light field. Their method

first computes all in focus images from each light field by estimating per-pixel frequency.

Next, they stitch the all in focus images into a 2D panorama. Finally, they generate

a focal stack by blending views from the original light fields onto the all in focus

panorama and rely on linear view synthesis to recover a panoramic light field.

The main advantage of our algorithm over [16] is that our approach directly

stitches the 4D light fields while their approach is based on lower dimensional processes

such as stitching 2D all in focus images and linear view synthesis based on 3D focal

stacks. Moreover, the per-pixel frequency analysis in [16] is error-sensitive. Specifically,

the highest frequency of each pixel on the focal stack does not necessarily correspond to
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the depth of the pixel due to occlusion and aliasing in angular dimensions. Therefore,

this scheme leaves artifacts on depth edges Fig. 6.2. Moreover, all in focus estimation

and linear view synthesis restrict [16] to Lambertian scenes.

6.1.2 Light Field Superresolution

Our goal shares the same interests with light field reconstruction and super-

resolution on finding a higher resolution light field. However, the major difference is

that our solution leverages multiple captured light fields to stitch into a super light

field with higher spatial and angular resolution, while the light field reconstruction and

superresolution focus on a single light field. Here we briefly review the prior work in

this area.

Based on a single light field, Bishop et al. [17] formulated the spatial light

field superresolution in a variational Bayesian framework. Wanner et al. [121] pre-

sented a unified variational framework to spatial-angular superresolution. However,

both methods require accurate depth estimation as the prior knowledge.

There is also an emerging trend of reconstructing sparsely sampled light field

for light field compression. Lehtinen et al. [62] explored the anisotropy in the temporal

domain and enhanced the reconstruction quality by a large factor. Marwah et al.

[72] used an overcomplete dictionary to reconstruct a sparse coded light field. Heide

et al. [45] applied Markov Chain Monte Carlo sampling instead of uniform sampling

on the target light field for better reconstruction. These techniques also have their

limitations. First, they do not have the complete light field data hence require schemes

such as training or approximation to acquire the higher resolution light field. Second,

the additional schemes are slow and error-prone. A key advantage of our technique is

its simplicity.

6.2 Algorithm Overview

To quilt N light fields, we first divide the problem into N − 1 pairwise light

field quilting problems, we then iteratively go though each pair to quilt the “super”
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Figure 6.3: The pipeline of our proposed light field quilting algorithm. We represent
the 4D light fields in 2D for simplicity.

light field. Similar to conventional multi-labeling problems such as disparity estimation

[54, 20] and texture synthesis [58], our iterative process runs several rounds (each round

with N − 1 pairwise quilts) before finding the local minimum. In our experiments,

commonly 1 round is enough to achieve reasonable results.

Fig. 7.9 shows our proposed processing pipeline. To quilt two light fields,

our strategy is to model light field registration as a 5D homography matrix and then

employ quilting to eliminate visual discontinuities/aliasing. It is worth noting that our

technique is analogous to image stitching used for synthesizing panoramas: light field

registration maps to image registration (Sec. 6.3) while light field stitching maps to

image calibration and blending (Sec. 6.4).

Before proceeding, we explain the notations. To represent each ray in the light

field, we follow the conventional two-plane parametrization (2PP). Every ray is pa-

rameterized by its intersection points with two planes: [u, v] as the intersection with

the camera plane Πuv and [s, t] as the second with sensor plane Πst. The two planes

are parallel to each other with distance f . Since we consider only pairwise quilting

problems, we denote the first light field as L and the second as L̃.

To represent each captured light field image, we discretize Πst and Πuv (i.e.,

each discrete sample [u, v] is the camera or microlens position and [s, t] is the pixel

location). Each light field is embedded in the 4D space where each point R in the

space [Rs, Rt, Ru, Rv] maps to a ray. We denote IR as color (intensity) of R in L and

IR̃ as in L̃. Under this parametrization, each 2D slice (u = u0, v = v0) in the 4D space
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corresponds to a view in the light field captured by a pinhole camera centered at [u0,

v0].

Note that light field images captured by Lytro cameras do not directly resemble

pinhole views in the scene. Therefore, we first map the in lens light field captured by

the camera to out of lens camera. In this case, each sub-aperture image corresponds

to a virtual pinhole view outside the mainlens. Note that the sensor of does not lie on

the same plane as the microlens array, hence when we map the sensor to the virtual

sensor of the virtual pinholes, there exists a relative movement between the virtual

sensor and the virtual pinholes. We then parameterize this pinhole array for our light

field quilting.

To fuse two light fields L and L̃, the brute-force approach would be to resample

them onto a common 2PP. Specifically, we first define a common 2PP as Πst −Πuv in

the 3D space. Next, for each ray R in L and ray R̃ in L̃, we find the intersection points

[Rs, Rt, Ru, Rv] and [R̃s, R̃t, R̃u, R̃v] on Πst − Πuv, hence we represent both L and L̃

with Πst −Πuv and find the common subspace.

To use this approach, on one hand, we need to assign an extremely dense sam-

pling frequency for the common 2PP in order to record all rays from L and L̃, otherwise,

some rays will intersect at points in between our sampling locations, in that case, we

will miss those rays. On the other, with the dense sampling, most points on the com-

mon 2PP will not have any information since no ray from L or L̃ will intersect at those

points, hence making the process memory inefficient.

An alternative approach is to assign a fixed spatial-angular sampling frequency

on the common 2PP and start intersecting rays from the 2PP to L and L̃ to fetch

information. In this case, we avoid dense sampling. However, we face the problem

of low sampling frequency of L and L̃, i.e. most rays intersecting L and L̃ will not

coincide with any ray sampled by L or L̃. Again we need a dense sampling with low

memory efficiency to capture all rays.

In Fig. 6.5, we show an example of brute-force resampling. First, we briefly

explain our setup: light field L, L̃ and L̄ (with common 2PP) are initialized with same
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2PPs and sampling frequencies ([u, v] = [10, 10], [s, t] = [500, 500]). We first rotate L̃

with 40 degrees clockwise around the v axis at the central view [u = 5, t = 5] , so that

L and L̃ together capture a light field with large horizontal (s, u direction) FoV of the

scene. Next, we rotate L̄ by 20 degrees and resample all rays captured by L and L̃ by

intersecting rays from L̄ to L (in blue) and L̃ (in red) to fetch information. Note that

in each [u, v] view of L̄, the [s, t] samples are very sparse due to the undersampling of

L and L̃. Moreover, L̄ does not capture all information sampled by L and L̃.

To avoid the memory issue, an effective method is the unstructured lumigraph

rendering [24]. However, without an accurate geometry proxy of the scene, such ap-

proach would introduce blurry and aliasing artifacts. Our high-dimensional geometry

proxy assumes each light field as a 5D hyper plane. By representing the registration as

the projection one plane to another, it better preserves the continuity on spatial and

angular dimensions.

We present three applications using different capturing configurations: 1) Hori-

zontal and vertical FoV enhancements. 2) Rotational parallax enhancement. 3) Trans-

lational parallax and bokeh enhancement.

6.3 light field Registration

As mentioned in the related work, traditional image-based rendering approaches

use geometry proxies such as simple planes or cubes for synthesizing new views or

stitching different views. The quality of the results depend on how well the proxy

approximates the actual scene geometry and most previous techniques are designed for

handling simple objects [64, 42] or scenes with few depth variations [25]. Conceptually,

we can adopt the similar scheme for light field registration. For example, if we assume

all captured rays are coming from planar surface in the scene, we could estimate a 3D

homography based on feature correspondences of two views of two light fields images.

However, the assumption of simple scene geometry contradicts what a light field camera

aims to capture: for producing effective DoF, the scene should exhibit strong depth

variations and cannot be approximated by simple planes. Therefore, if we use simple
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(a) (b) (c) (d)

Figure 6.4: Comparison of 3D homography and light field homography on two views
from L and L̃. The red line divides the view from L (left) and the view
from L̃ (right). The white circle shows the enlarged yellow highlighted
pavement. (a) Result of using 3D homography to warp view [u = 5, v = 5]
in L and [u = 5, v = 5] in L̃. (b) Result of using the matrix in (a) to
warp view [u = 0, v = 0] in L and [u = 0, v = 0] in L̃. (c) Result of
using 5D light field homography to warp view [u = 5, v = 5] in L and
[u = 5, v = 5] in L̃. (d) Result using the same 5D light field homography
in (c) of view [u = 0, v = 0] in L and [u = 0, v = 0] in L̃.

geometry for quilting light fields, the results can exhibit strong discontinuity artifacts

on different views. For example, by assuming the view [u = 3, v = 3] in L and view

[u = 3, v = 3] in L̃ are related by a homography, we can compute a transformation

matrix M for the warping of the two views. As shown in 6.4 (a), to the left red line

shows the view in L and to the right shows the warped view in L̃. M successfully

warped the two views. However, if we apply M for warping view [u = 0, v = 0] in L

and L̃, as shown in (b), the result exhibits severe discontinuity such as the pavement in

front of the sculpture. A straight forward improvement is to find homography for each

individual view pairs. However, since we do not have the correspondences views in the

light fields, the search space will increase quadratically with the number of views.

In this dissertation, we present a novel light field registration technique that

conducts pair-wise light field warping. Given two light fields L and L̃, we first assume

that each 4D light field is lying on a different 5D hyperplane, similar to 2D images

captured in 3D space. Therefore, warping from L̃ to L can be represented by a 5 × 5
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(a) (b) (c) (d) (e) (f)

Figure 6.5: (a) and (b) columns: two synthetic light fields at [u = 11, v = 11, s =
500, t = 500]. (c): The resampling pattern of the new light field with
brute-force light field resampling (blue from L and red from L̃). (d):
The new light field at [u = 11, v = 11, s = 500, t = 500]. (e): resampling
pattern of the new light field with our light field homography. (f): The
new light field by our algorithm.

projective transform matrix M . We call it the light field homography. Specifically,

we first embed each 4D ray into the 5D homogeneous space. M then maps each ray

R̃ = [R̃s, R̃t, R̃u, R̃v, 1] in L̃ to R = (Rs, Rt, Ru, Rv, w) in L as:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

wRs

wRt

wRu

wRv

w

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M00 M01 M02 M03 M04

M10 M11 M12 M13 M14

M20 M21 M22 M23 M24

M30 M31 M32 M33 M34

M40 M41 M42 M43 M44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R̃s

R̃t

R̃u

R̃v

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6.1)
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Expanding Eqn. 6.1, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rs = (M00R̃s +M01R̃t +M02R̃u +M03R̃v +M04)/w

Rt = (M10R̃s +M11R̃t +M12R̃u +M13R̃v +M14)/w

Ru = (M20R̃s +M21R̃t +M22R̃u +M23R̃v +M24)/w

Rv = (M30R̃s +M31R̃t +M32R̃u +M33R̃v +M34)/w

, (6.2)

where w = M40P
1
s +M41P

1
t +M42P

1
u +M43P

1
v +M44.

By Eqn. 6.2, each pair of corresponding rays in L and L̃ provides 4 equations,

to estimate all 25 unknowns in M , we need to select at least 7 pairs of rays of the

two light fields that minimize the difference in the overlapped subspace. Similar to 2D

image registration, we use SIFT to find feature rays. We then perform global color

matching to find the potential matching pairs. To remove outliers, our algorithm uses

RANSAC where the 5D projective transformations are used as its precondition.

Conceptually, it is ideal to use a 4D SIFT feature detector. However, while the

sampling in the spatial domain of an acquired light field is generally dense enough, the

sampling of the captured light field on the angular domain [39] is much sparser (10×10
for Lytro cameras and 17×17 for Stanford light field data sets). Consequently, the ray

samples can be highly discontinuous along angular dimensions, i.e., the disparity of its

corresponding 3D point can be much larger than 1 pixel. Applying the gradient-based

SIFT feature detector in the angular domain can lead to large errors. We therefore

only use the 2D spatial SIFT feature detector. More sophisticated schemes based on

depth estimation can be potentially used and is important future work.

Next, we apply the RANSAC algorithm (Alg. 1) to find the best m pairs of ray

correspondences. The algorithm is a straightforward extension of the one used for the

2D homography estimation.

Finally, we use the SVD to estimate M by rewriting Eqn. 6.2 as:
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Algorithm 1 Light Field Homography with RANSAC

Require: feature ray R̃i from L̃ and Ri from L (i ∈ N)
1: Minimum error Errmin =∞.
2: Best homography matrix Mmin = identity matrix.
3: Iteration it = 0.
4: Assign k, t and d empirically.
5: while it < k do
6: Initialize C with randomly selected m pairs of feature rays from L and L̃ with

color difference smaller than t.
7: Estimate homography matrix M via SVD from C.
8: for every point R̃j in L̃ not selected in C do
9: Warp R̃j onto L with M .
10: if it corresponds with a ray Rj in L with color difference smaller than t then
11: Add R̃j, Rj to C.
12: end if
13: end for
14: if the number of pairs in C is larger than d then
15: Recompute the homography matrix M via SVD from C.
16: Measure the current error E by warping each ray R̃i onto Ri and measure the

spatial distance.
17: if E < Errmin then
18: Errmin = E.
19: Mmin = M .
20: end if
21: end if
22: end while
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6.3)

where 0 = (0, 0, 0, 0, 0). In our experiments, setting m > 8 pairs of feature rays

generates robust light field registration.

Fig. 6.5 demonstrates the result of our technique that warp L̃ to L. Yu [129]

proved that the registration of two light fields with different 2PP is quadratic rational.

As shown in Fig. 6.4, the light field homography successfully warped both views

(shown in (b) and (d)) from L̃ to L. Even though our light field homography is only an

approximation of the true registration, it better preserves the spatial-angular continuity

of the warped light field, which is more crucial to human observers. As shown in Figure

6.5, the warped light field is more continuous both in spatial dimensions (in each [u, v]

view) and angular dimensions (across different [u, v] views) compared with brute-force

resampling.

6.4 Graph Cuts based Quilting Framework

Once we register the two light fields, we then set out to stitch them. The

simplest case is to stitch two images (i.e., two 2D light fields) into a panorama where a

graph-cut based solution is often adopted. We follow the same strategy for the 3D/4D

case. Given two overlapping light fields, our goal is to assign a binary label lR for each

ray R in the overlapped region, to specify which one of the two light fields it should use.

In the 2D case panorama stitching case, this can be done by first constructing a graph

of pixels in the overlapped region and then search for a 2D cut through the region that
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minimizes the overall differences. Although we adopt the same graph-cut approach

for stitching higher dimensional light fields, the naive approach of separately stitching

each 2D slice fails. This is because there lacks control over the consistencies of the

cuts across different slices, e.g., two adjacent stitched slices may appear significantly

different as shown in the second row of Fig. 6.7.

We instead directly conduct high-dimensional cuts. As shown in Fig 7.9, with

estimated registration information, we first warp L̃ towards L to mark the overlapped

subspace L̂. In the quilting stage, we build a hierarchical 4D graph upon L̄ and map

the spatial angular coherence as edges in the graph. Finally, we conduct graph cuts

to acquire the optimal seam and quilt L and L̃ into a super light field L̄. Next, we

find the optimal cut through the overlapped 4D space. We formulate the problem of

finding the cut as energy minimization. Specifically, we define the energy function as:

E =
∑
R̄∈L̄

E(lR̄) +
∑

R̄,R̄′∈N
E(lR̄, lR̄′) (6.4)

where E(lR̄) denotes the cost of assigning R̄ with label lR̄, E(lR̄, lR̄′) denotes the cost

of assigning labels lR̄ and lR̄′ to R̄ and its adjacent ray R̄′, and N is the set of adjacent

rays.

Recall that multiple light fields may overlap at the same region. This translates

to an N -labeling problem, i.e., each ray can be assigned as one of the N labels. For

high-dimensional graphs, it is well studied that computing the optimal cut is an NP-

hard problem. We there adopt an approximation solution following the seminal work

by Boykov et al. [20]. To reiterate, the approach first divides the problem into an

iterative binary labeling problem. In each iteration, a new label is randomly selected

and each ray R has to choose whether to stay as the original label or choose the new

label to minimize energy function 6.4. Next, it maps the terms in the function onto a

graph and conduct max-flow/min-cut algorithm to find the global minimum. To our

knowledge, it is the first time that the graph-cut technique is used on light field.
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6.4.1 Energy Formulation

Before defining the terms in the binary energy function 6.4, without loss of

generality, we denote lR̄ = 0 for assigning R̄ to L and lR̄ = 1 for assigning R̄ to L̃. The

first term E(lR̄) of Eqn. 6.4 guarantees that for any ray R̄ in L̄, if R̄ does not lie in

the overlapped space, it will be assigned with the label of the light field it comes from.

Otherwise, we rely on E(lR̄, lR̄′) to determine its label. Specifically, we define E(lR̄) as:

E(lR̄) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∞ , R̄ 
∈ L̂ ∧ ((R̄ ∈ L ∧ lR̄ = 1) ∨ (R̄ ∈ L̃ ∧ lR̄ = 0))

0 , otherwise

(6.5)

The second term E(lR̄, lR̄′) measures the spatial-angular coherence of the stitched

light field. The key observation here is that to reliably stitch two light fields, we need

to measure the differences of adjacent rays in both spatial and angular dimensions.

Previous work [58, 5, 4] have used tailored energy functions in the 2D and 3D case:

E(lR̄, lR̄′) = |IR̄ − IR̄′ |+ |IR̄ − ĨR̄′ |, (6.6)

where | · | denotes the norm (e.g., L1 or L2). Eqn. 6.6 represents E(1, 0) + E(0, 1),

which corresponds to the cost of assigning the neighboring rays with different labels.

However, this simple measurement does not well reflect the complexity of rays in the

4D light field space because it ignores cost of assigning the neighboring rays with the

same labels. We instead use the following function:

E(lR̄, lR̄′) = |ĨR̄ − IR̄′ |+ |IR̄ − ĨR̄′ | − |IR̄ − IR̄′ | − |ĨR̄ − ĨR̄′ |. (6.7)

The new energy function represents (E(1, 0) + E(0, 1)) − (E(0, 0) + E(1, 1)), where

E(1, 0)+E(0, 1) corresponds to the cost of assigning the neighboring rays with different

labels and E(0, 0) +E(1, 1) correspond to the one that assigns the rays with the same

label. The new term computes the difference of the two cases and use it as the first

order smoothness term in global optimization.

Note that in order to run standard graph cuts (α-expansion), E(lR̄, lR̄′) must

be regular (non-negative). To guarantee this property, we propose two schemes.
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Truncation In this scheme, if E(lR̄, lR̄′) happens to be negative, we simply truncate

it to zero, i.e., E ′(lR̄, lR̄′) = max(0, |ĨR̄ − IR̄′ |+ |IR̄ − ĨR̄′ | − |IR̄ − IR̄′ | − |ĨR̄ − ĨR̄′ |).

Linear Mapping Note that the truncation may bias towards assigning the rays with

the same label by chopping the negative values to zero and maintaining the positive

values. To avoid it, we adopt a normalization step to map the range of E(lR̄, lR̄′) to

[0, 1]. Specifically, we first compute the cost E(lR̄, lR̄′) for all neighboring rays R̄, R̄′

based on Eqn. 6.7 and find the min and max values. We then map [Emin, Emax] to

[0, 1] through linear mapping as:

E ′(lR̄, lR̄′) =
E(lR̄, lR̄′)−Emin

Emax − Emin
. (6.8)

Gradient Compensation Since seam (cut) boundaries are more prominent in the low

frequency regions than in the high frequency ones, previous approaches also incorporate

gradient priors to better preserve smoothness. In our case, since the angular dimensions

are generally sparse due to undersampling, directly measuring the gradient along these

dimensions may introduce large errors. We therefore only measure the gradients in the

spatial domain as:

EG(lR̄, lR̄′) =
E ′(lR̄, lR̄′)

|Gs(R̄)|+ |Gt(R̄′)| , (6.9)

where Gx(R̄) measure the gradient of R̄ on dimension x.

6.4.2 Graph Construction

Next we construct the graph in a way that we can reuse the max-flow/min-

cut algorithm to minimize our energy function. We follow the general purpose graph

construction framework by Kolmogorov and Zabih [53]: each ray in the new light field

L is a node in the graph, therefore the graph is 4 dimensional. We then add the source

node S for label 0 and sink node T for label 1, the t-links from the graph nodes to S or
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Figure 6.6: Graph construction for our light field quilting algorithm. Top row:
Warped light field L and L̃ with overlapped subspace L̂ (simplified in
2D). (a) and (c): The enlarged boundary regions of L and L̃. Boundaries
nodes in L and L̃ are linked with source/target. They are also linked to
nodes in L̂ with ∞ capacity. (b): Nodes in L̂ does not have t links but
n-links.

83



T , and the n-links between the graph nodes using 8-connectivity (2 neighbors in each

dimension).
Given two overlapped light fields L, L̃, and the overlapped subspace L̂, we

classify the nodes into three types:

1. Active node: the ones locates in L̂.

2. Boundary node: locates in L or L̃ but at least one of its neighbor is an active
node.

3. Inactive node: locates in L or L̃ and all neighbors are in L or L̃.

As shown in Fig. 6.6 (a), we add edges to the graph by first marking the inactive

nodes in L and L̃. These nodes only have t-links connected to S if it is within L and to

T if it is within L̃. They labels are fixed in prior and we can ignore them in the graph

cut process. Next, we add edges to the boundary notes. Specifically, we add t-links

to each boundary node to either S or T with ∞ capacity, depending on if it belongs

to L or L̃. We also add n-links for connecting each boundary node to its neighboring

active nodes with weight ∞ (Fig. 6.6 (a), (c)). This is because the boundary node

must belong to either S or T . Finally, as shown in Fig. 6.6 (b) for each active node

Ri, it is not connected to either S or T . Instead, it is only connected to its active node

neighbor Rj , with capacity EG(lRi
, lRj

).

To illustrate the importance of adding angular coherence, we conduct an an

experiment on the Tsukuba dataset [29] from the Middlebury database as shown in

Fig. 6.7. The Tsukuba dataset is a 5 × 5 light field. We select two columns (Column

1 and Column 3) and stitch them horizontally to increase the horizontal FoV. (row

1× 5 views from the original 5× 5 light field and spatially stitch them to increase the

horizontal FoV.

We illustrate the case in 2D for clarity. The first row shows the two 1× 5 light

fields and the two slices on v and t dimensions that correspond to their epipolar plane

images (EPI). A successful quilting should not only maintain the smoothness on the

spatial dimension t, but also on angular dimension v. The second row shows the la-

beling on all views by adding only spatial constraints same as the traditional image
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Figure 6.7: Top row: Two 3D light fields (v, s, t dimensions) from Tsukuba dataset
[29]. The red and blue slices are the EPIs (v, t slices) of each light field.
Second row: Labeling and quilted light field by warping and graph-cut
with only spatial constraints. Notice the discontinuity on EPIs of new
light field. Third row: Labeling and quilted light field by our light field
quilting. Notices the consistency on the EPIs.
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stitching techniques. As shown in the second row of Fig. 6.7, there exists noticeable

discontinuities on the EPIs. This is because the seams only represent local minimum

within each view, but not the cost cross different views. When using the stitched light

field to synthesize new views, we observe strong inconsistency across the views in the t

dimension. By enforcing angular coherence, our approach is able to both preserve the

smoothness on the EPI and maintain coherence across views in the stitched LF.

Hierarchical Graph Cuts Recall that our brute-force approach add edges at all

dimensions. As a result, the 4D graph is very large. For example, given two light fields

at [u = 11, v = 11, s = 800, t = 800], we may construct a graph with roughly 70 million

nodes and 0.6 billion edges. Applying the max-flow/min-cut algorithm on such graph

incurs significant memory and computational overhead. In fact, on a computer with

Intel i7-3930 CPU and 64GB memory, stitching only one pair of light fields captured

by Lytro using our approach demands tens of gigabytes of memory and takes hundreds

of hours to compute.

We resort to the coarse-to-fine approach [6] for simultaneous speeding up the

graph cuts process and reducing the memory requirements. Our strategy is to first

conduct graph cuts on a lower-resolution graph to find an approximate cut. We then

go one level finer and use the approximate cut to eliminate unnecessary nodes in the

new graph and reapply the graph-cut. Specifically, we first build a low-resolution graph

G′ using the same graph construction process where each node now represents a patch

of rays in the light field L. Next, we conduct graph cuts on G′ and map each labeled

nodes to a patch of nodes in the graph G the original resolution. The nodes that lie

far away from the cut will keep their label obtained on G′. Only nodes near the cut

will be deemed active or boundary. This significantly reduces the number of nodes and

edges of the graph and greatly accelerates the graph-cut algorithm. Although more

levels can be used in this coarse-to-fine approach, we find in most cases two levels are

generally sufficient, with first level at 1
4
resolution on each dimension and second level

at 1
2
resolution.
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6.5 Results

We conduct our experiments on PC with Intel i7-3930 CPU and 64GB memory.

For synthetic scenes, we use Bryce raytracer for simulating a set of light fields. For

real scenes, we use the commodity Lytro light field camera to capture a set of light

fields at spatial resolution 328×378 and angular resolution 10×10 on the plane of the

microlens array. We demonstrate our approach to create four different types of light

field effects: light field panorama, light field mosaic, rotational parallax enhancement,

and translational parallax enhancement.

Note that the the in-lens light field changes with the main lens focal length. To

maintain the light field during the capture process, we fix the mainlens focal length.

We also leverage the creative mode provided by the camera to match the shutter speed

and ISO to minimize the color difference among light field images. Since the Lytro

SDK is not open source, we use the toolkit by Dansereau et al. [28] to extract the raw

images and conduct calibration, anti-vignetting and demosaicing.

6.5.1 Light Field Panorama

Different from traditional 1D and 2D panorama, light field panorama not only

gives a large horizontal FoV of the scene, it also introduces dynamic DoF effects and

parallax effects.

Figure 6.8 illustrates our light field panorama result on a synthetic mountain

scene. To render four light fields, we first synthetically build 11×11 camera array with

each camera at a resolution of 500 × 500 covering 60 degree horizontal and vertical

FoV. We subsequently rotate the the camera array 30 degree at its the central camera

CoP around its central camera up direction (aligned with y axis) to capture each light

field. The overall horizontal FoV covered by all four light fields is approximately 120

degrees.

The top row in Fig 6.8 shows the central views of the four light fields. The

middle row shows the EPI image of the red highlighted slice in each view. Notice that

there exists subtle difference on the common FoV on the EPIs, e.g. the disparity of
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Figure 6.8: Light field quilting on a synthetic mountain scene. Top row: Central
view of each light field. The red line highlighted the u, s slices of the
EPIs. Second row: the EPIs (u, s slices) of each light field. Third row:
The shallow DoF rendering (left) of the new light field, and the red-cyan
anaglyph rendering of the new light field. Bottom row: The quilted EPI.

the mountain at the beginning of the third EPI is larger than the one at the end of the

second EPI. This is because we only preserve the ray geometry of the central view while

the rest views can exhibit inconsistency. We rely on the stitching framework to reduce

inconsistency. The third row shows a synthetic shallow DoF image rendered using the

stitched light field. Notice how the in focus regions appear as sharp as the original all-

in-focus image whereas the defocus blurs vary smoothly with respect to scene depth.

The bottom EPI image of red highlighted slice of the stitched light field demonstrates

that our framework is able to maintain both spatial and angular consistency.

Figure 7.1 shows our light field panorama result on a real sculpture scene. To

capture this scene, we mount a Lytro camera on a tripod and horizontally rotate it

4 consecutive times, each about 30 degree away from the center (Fig. 6.10 (a)). The

first row shows the raw light field images of the captured 4 light fields. Note that

we do not and cannot guarantee that the rotation is exactly around the central view.
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Figure 6.9: The light field quilting on a real garden scene. Top row and second row:
Shallow DoF rendering focusing at the background fountain (top) and
foreground flowers (second). Third row: The EPI (u, s slice) of the red
highlighted line. Bottom row: red-cyan anaglyph rendering of the new
light field.
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(a) Spatial Quilting (b) Angular Quilting

Figure 6.10: The light field capturing processes for the applications in this disserta-
tion. (a) Capture process for spatial quilting: The white arrow shows
the process of horizontally rotating the Lytro camera on a tripod for
capturing a 1D light field panorama.. The yellow and white arrows to-
gether show the process of capturing a 2D light field panorama. E.g.
4 steps on each arrow will build a 4 × 4 light field array. (b) Capture
process for angular quilting: The yellow arrow shows the process of cap-
turing a rotational light field array for orbiting parallax enhancement.
The white arrow shows the process of capturing a translational light
field array for translating parallax enhancement.

As a result, we observe large differences on the EPIs of across light fields. The third

row shows our synthetic shallow DoF results focusing at the background sculpture and

foreground plants. And the bottom row shows the red-cyan anaglyph image generated

by overlapping two views in quilted light field. The fourth row shows the stitched

EPI from the four individual EPIs. Without using elaborate setups, our approach

is still able to successfully preserve the smooth transitions in both the spatial and

angular dimensions. Moreover, unlike all-in-focus image based light field panorama,

our approach does not rely on the estimation of local gradient of the focal stack or any

other depth-estimation based schemes. This therefore minimizes the visual artifacts at

the occlusion boundaries on the rendered image.

The garden scene shown in Figure 6.9 is particularly challenging for light field

stitching due to rich depth layers and complex occlusion conditions. To capture this
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Figure 6.11: 2D light field panorama (in red-cyan anaglyph rendering) quilted by a
5 × 4 light field array using our light field quilting algorithm. The red
and yellow lines highlight the u, x and v, t EPIs shown on the bottom
and right respectively.

scene, we mount a Lytro camera on a tripod and horizontally rotate it 7 times at about

30 degree each time. To capture the dynamic fountain in the panorama, we purposely

leave it outside the common FoVs of any two overlapped light fields so that we avoid

dealing with quilting on the time domain. The first and second row shows the shallow

DoF rendering with far and close focuses respectively. The red-cyan anaglyph image

on the third row and the EPI image on the bottom demonstrate that even in such

complex situations, our algorithm is still able to synthesize a visually pleasing light

field with a much larger FoV.

6.5.2 Light Field Mosaic

Similar to light field panorama, our light field mosaic stitches a 2D grid of light

fields with a large horizontal and vertical FoV. In Fig. 6.11 (a), we capture the garden

scene by rotating a Lytro camera on a tripod horizontally 5 times and vertically 4

times, each time at 30 degree interview. This results in a 5 × 4 angular grid around

91



(a) (b) (c)

Figure 6.12: The quilted light field with increased orbiting parallax. (a) Two views
from the quilted light field. The red line highlights the “orbiting” u, x
EPI of the new light field. (b) and (c) show the reconstructed 3D mesh
based on the new light field.

the tripod. In this case, we do not restrict the fountain in one light field but rely

on the stitching technique to optimize the seam. The result shows red-cyan anaglyph

image generated by overlapping two views in stitched light field. The two EPI images

show that our algorithm is able to preserve angular consistency on both ux and vy

dimensions. Moreover, although each individual light field captures the fountain at

different time, our stitching technique is still able to synthesize water flows from the

fountain with little visual artifacts.

6.5.3 Orbiting parallax enhancement

Rotational parallax enhancement aims to increase the freedom of viewpoints

orbiting an object by quilting together multiple light fields. Our setup is similar to

capturing and rendering concentric mosaic [99]. In [99], an horizontal array of cameras

are rotated concentrically to capture a 3D concentric mosaics. Ours used a light field

camera to orbit around an object. However, the direction of their cameras are tangen-

tial to the orbiting circle while ours is facing the center object. We aim to combine all

the captured light fields into a single “circular” light field around the object, with each

light field representing a piecewise linear approximation of the arc on circle. we call it
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“orbiting light field”.

To capture a orbiting light field, we place it on a rotation table in front of a

constant color background. We fix the Lytro camera while rotating the object. Since

the background is constant, this is equivalent to rotating the camera around the object

(Fig. 6.10 (b)), which is more difficult to setup. Since the Lytro camera does not

support continuous capture mode and the camera requires about 3 second to record

each capture before it is ready for the next capture, we manually shoot each image in

5 seconds. The speed of the rotation table is at 0.1 degree per second, therefore we

take each shot 0.5 degree after from its previous shot, so that all the light fields form

a piecewise linear approximation of the circular light field.

In Fig. 6.12, we acquire 60 light fields to cover around 30 degree of the circular

light field. The top row shows two views from at angle 0 and 30 rendered with a small

aperture, and the bottom row shows the “rotational” EPI image of the red highlighted

slice. Our algorithm is able to preserve the smooth transition on the rotational EPI

image. With the increased rotational parallax, we can synthesize novel views rotating

around the object with a large angle while a single light field in restricted in a small

linear motion.

Finally, we apply our orbiting light field to the 3D reconstruction application.

To get the 3D mesh, we first estimate the 3D point cloud from our light field with

structure from motion [101] and then apply 3D Delaunay triangulation [13]. As show

in Fig. 6.12, we are able to recover fine details such as the hair strands of the statue,

demonstrating the benefits of having a lumigraph of light fields in 3D reconstruction.

6.5.4 Translating parallax enhancement

Translating parallax enhancement aims to increase the bokeh of the shallow

DoF rendering and the freedom of viewpoints of the novel view rendering by quilting

multiple translating light fields on the [u, v] plane. The bokeh of traditional light field

rendering is confined by the number of views in the light field, and the freedom of

viewpoints is restricted by the small baseline between the first view and the last view
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(a) (b) (c) (d)

Figure 6.13: The quilted light field with increased parallax and bokeh. The top row
is using the central light field of the captured light field array. The
bottom row is using the quilted light field. (a) and (b) Shallow DoF
renderings of the chess scene focusing at foreground queen chess piece
and the background door respectively. (c) The leftmost view of the
scene. (d) The rightmost view of the scene.
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on u, v dimensions. By increasing the number of views of the scene by quilting multiple

light fields captured at different locations on the [u, v] plane, our algorithm is able to

increase the bokeh and parallax at the same time.

As shown in Fig. 6.10 (b), To capture the light fields, we linearly translate the

light field camera in front of the scene with each shot 0.5 mm away from the other.

Note that this distance does not guarantee views from one captured light field L will

match views from next captured light field L̃. In fact, as mentioned in Sec. 6.13, with a

Lytro camera, translating the light field will not only involve angular shifting but also

introduce spatial movement of the scene in each light field views. Therefore we apply

light field warping to roughly match L and L̃ and rely on spatial angular stitching to

find the best seam. The top row of Fig. 6.13 shows the dynamic DoF effect ((a) and

(b)) and parallax effect ((c) and (d)) of a single view. Due to the sparse sampling of

a single light field, the bokeh of the rendered image is very small and the parallax is

hard to notice.

In the bottom row, we stitch 21 light fields together and the resulting light

field can be used to synthesize a much shallower DoF. As shown in (a), notice the

background door appears much blurrier compared with the result from a single light

field when we focus at the foreground queen chess piece. We can also observe the

smooth transition of the blurriness on the chess pieces on different planes, when we

shift the focus to the background. This effect is harder to observe when using only one

light field. (Fig 6.13 (b)).

We also use the resulting light field as an image-based rendering primitive to

synthesize new views with extended DoF. Compared with the result using a single

light field, our result is able to smoothly translate the viewpoint from the rightmost

position when we see almost half of the black piece on the right (as shown in (d)), to

the leftmost position when the black piece disappears. While the result with a single

light field is restricted within a small region.
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6.6 Discussions and Conclusions

We have presented a light field quilting technique which takes multiple light

fields as inputs and generates new light fields with increased spatial and angular reso-

lution as outputs.

Light Field Homography Currently we use the 5D homography to model the warp-

ing between light fields to preserve spatial-angular continuity. An immediate future

direction is to explore the depth based warping to better represent the ray geometry.

In our homography estimation, thresholds such as k, t, d are empirically chosen. We

plan to leverage image statistics for automatically assigning those values.

Gradient Domain Composition Gradient domain composition by solving a Poisson

equation is an effective way to match the colors in 2D image stitching. Theoretically,

it could also be generalized onto the light field quilting case. However, due to the

undersampling on the angular dimensions by conventional light field cameras, it is not

reasonable to measure 4D gradients on each light field. Therefore in our experiment,

we chose to lock the shutter speed and ISO during capturing to maintain the color

tones of different light fields.
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Chapter 7

ENHANCING TEMPORAL RESOLUTION: A COMPUTATIONAL
CAMERA APPROACH

As discussed in Sec. 2.6.3, very little work has been conducted to improve the

temporal resolution of light field imaging. In fact, by far nearly all acquired light field

data are for static scenes. An exception is the data acquired by the light field camera

array. The Stanford light field camera array [122, 123, 114, 115] is a two dimensional

grid composed of 128 1.3 megapixel Firewire cameras which stream live video to a

stripped disk array. The large volume of data generated by this array forces the DoF

effect to be rendered in post processing rather than in real-time. Furthermore, the

system infrastructure such as the camera grid, interconnects, and workstations are

bulky, making it less suitable for on-site tasks. The MIT light field camera array [127]

uses a smaller grid of 64 1.3 megapixel usb webcams instead of Firewire cameras and

is capable of synthesizing real-time dynamic DoF effects. Both systems, however, still

suffer from spatial aliasing because of the baseline between neighboring cameras. The

camera spacing creates appreciable differences between the pixel locations of the same

scene point in neighboring cameras producing an aliasing effect at the DoF boundary

when their images are fused.

More recently, Agrawal et al. [10] proposed a mask based optical design to

achieve spatial-angular-temporal tradeoffs using a time-varying aperture mask and a

static mask close to the sensor. Their design allows variable resolution tradeoff depend-

ing on the scene. However, their method has three major limitations: 1) The output

video sequence is at a much lower resolution than the captured image due to the res-

olution tradeoff. 2) The dynamic components in the scene lose refocus capability. 3)
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The masks on the aperture and the sensor greatly reduce the light efficiency of the

design.

In this chapter, I introduce a stereo based light field camera that can acquire

dynamic light field videos and synthesize dynamic refocusing on the fly. Our solution

builds upon a novel hybrid stereo-lightfield solution. Our goal is to first recover a

high-resolution disparity map of the scene and then synthesize a virtual light field for

producing dynamic DoF effects. Despite recent advances in stereo matching, recovering

high-resolution depth/disparity maps from images is still too expensive to perform in

real-time. We therefore construct a hybrid-resolution stereo camera system by coupling

a high-res/low-res camera pair. We recover a low-res disparity map and subsequently

upsample it via fast cross bilateral filters. We then use the recovered high-resolution

disparity map and its corresponding video frame to synthesize a light field. We imple-

ment a GPU-based disparity warping scheme and exploit atomic operations to resolve

visibility. To reduce aliasing, we present an image-space filtering technique that com-

pensates for spatial undersampling using mipmapping. Finally, we generate racking

focus and tracking focus effects using light field rendering. The complete processing

pipeline is shown in Figure 7.2.

We map all processing stages onto NVIDIA’s CUDA architecture. Our system

can produce racking focus and tracking focus effects with arbitrary aperture sizes and

focal depths for the resolution of 640× 480 at 15 fps, as shown in the supplementary

video. This indicates that if we capture the video streams at the same frame rate,

we can display the refocused stream simultaneously. Our system thus provides a low-

cost, computational imaging solution for runtime refocusing, an effect that is usually

the domain of expensive movie cameras with servo-controlled lenses. Experiments on

both indoor and outdoor scenes show that my framework can robustly handle complex,

dynamic scenes and produce high quality results. Figure 7.1 shows the result of my

system on a parking lot scene.
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Figure 7.1: Depth of Field effect on a parking car scene using my system.

7.1 Hybrid-Resolution Stereo Camera

We first construct a hybrid stereo camera for recovering high-resolution dispar-

ity map in real-time. Our system uses the Pointgrey Flea2 camera pair to produce

one high-resolution color video stream and one low-resolution gray-scale video stream.

We synchronize frame capture to within 125μs by using the Pointgrey camera synchro-

nization package. A unique feature of my approach is coupling my Hybrid-Resolution

Stereo Camera with a CUDA processing pipeline for real-time DoF synthesis. Sawhney

et al. proposed a hybrid stereo camera for synthesis of very high resolution stereoscopic

image sequences [93]. Li et al. also proposed a hybrid camera for motion deblurring and

depth map super-resolution [65]. Our configurations, however, have many more advan-

tages. First and foremost, it provides a multi-resolution stereo matching solution that

can achieve real-time performance (Section 7.2). Second, the lower bandwidth require-

ment also allows my system to be implemented for less expense on a greater number

of platforms. Stereo systems that stream two videos at 15 fps and 640×480 resolution

can produce up to 27.6 MB of data per second. By comparison, my hybrid-resolution

stereo camera only produces slightly more than half that rate of data. Although my

current implementation uses Firewire cameras, the low bandwidth demands of my so-

lution make it possible to use a less expensive and more common alternative like USB

2.0, even for streaming higher resolutions such as 1024 × 768. Finally, compared to

off-the-shelf stereo cameras such as Pointgrey’s Bumblebee, my system has several ad-

vantages in terms of image quality, cost, and flexibility. For example, the form factor
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Figure 7.2: The imaging hardware and the processing pipeline of my dynamic DoF
video acquisition system. All processing modules are implemented on
NVIDIA’s CUDA to achieve real-time performance.

of the Bumblebee forces its lenses to be small and it produces image with severe radial

distortion. Our system is also less expensive ($1500 vs. $4000), and my setup allows

me to dynamically adjust the camera baseline to best fit different types of scenes unlike

the Bumblebee. We calibrate the stereo pair using a planar checker board pattern the

algorithm outlined by Zhang [137]. It is not necessary, however, that the calibration

be absolutely accurate as the disparity map is recovered from a severely downsampled

image pair. Our experiments have shown that disparity map recovery using belief

propagation on the low-resolution image pair is not affected by slight changes in the

camera pair geometry. The intensity calibration on the camera pair is performed prior

to capture via histogram equalization. The mappings for these processes are retained

and applied to each incoming frame prior to stereo matching.

7.2 Real-time Stereo Matching

In order to efficiently generate a high-resolution disparity map from the input

low-res/high-res image pairs, we implement a GPU-based stereo matching algorithm

on CUDA.
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7.2.1 CUDA Belief Propagation

Stereo matching is a long standing problem in computer vision [94]. Global

methods based on belief propagation (BP) [106] and graph-cut [53, 20] have been

known to produce highly reliable and accurate results. These methods, however, are

more expensive when compared to local optimization methods such as dynamic pro-

gramming. Fortunately, BP lends itself well to parallelism on the GPU [21, 43], where

the core computations can be performed at every image pixel in parallel on the device.

We utilize the methods presented by Felzenwalb [38] to speed up my imple-

mentation without affecting the accuracy: We use a hierarchical implementation to

decrease the number of iterations needed for message value convergence; We apply a

checkerboard scheme to split the pixels when passing messages in order to reduce the

number of necessary operations and halve the memory requirements; and we utilize a

two-pass algorithm to reduce the running time to generate each message from O(n2)

to O(n) using the truncated linear model for data/smoothness costs.

Our CUDA BP implementation uses five separate kernels, whereas the CPU only

calls the appropriate kernels and adjusts the current parameters/variables. A kernel is

used to perform each of the following steps in parallel, with each thread mapping to

computations at a distinct pixel:

1. Compute the data costs for each pixel at each possible disparity at the bottom
level.

2. Iteratively compute the data cost for each pixel at each succeeding level by ag-
gregating the appropriate data costs at the proceeding level.

3. For each level of the implementation:

(a) Compute the message values at the current ‘checkerboard’ set of pixels and
pass the values to the alternative set. Repeat for i iterations, alternating
between the two sets.

(b) If not at the bottom level, copy message values at each pixel to corresponding
pixels of the succeeding level.

4. Compute the disparity estimate at each pixel using the data cost and current
message values corresponding to each disparity.
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Table 7.1 shows the performance of my algorithm on some of the Middlebury

datasets at different resolutions. Despite the acceleration on the GPU, we find that it

is necessary to use the lower resolution images (320 × 240 or lower) as inputs to my

stereo algorithm in order to achieve real-time performance.

Data sets
Resolutions

128× 96 320× 240 640× 480

Teddy 13ms 78 ms 446 ms

Tsukuba 8ms 55ms 357 ms

Cones 11ms 69 ms 424 ms

Table 7.1: Performance of my CUDA stereo matching at different resolutions. Note
that the number of disparity levels is proportionally scaled to the resolu-
tion. The levels of belief propagation are all set to 5 and iterations per
level are all set to 10.

In my experiments described in the rest of the chapter, we first smooth these

low-resolution image pairs using a Gaussian filter where σ equals 1.0, then process

them using my implementation with a disparity range from 0 to 35, maximum data

cost and smoothness costs of 15.0 and 1.7, respectively, a data cost weight of 0.7 in

relation to the smoothness cost, with 5 levels of belief propagation and 10 iterations

per level. Each kernel is processed on the GPU using thread block dimensions of 32×4.

7.2.2 Fast Cross Bilateral Upsampling

Given a low-resolution disparity map D′ and a high-resolution image I, we

intend to recover a high-resolution disparity map D using cross bilateral filters [128],

where we apply a spatial Gaussian filter to D′ and a color-space Gaussian filter to I.

Assuming p and q are two pixels in I; W is the filter window size; Ip and Iq are the

color of p and q in I; and q′ is the corresponding pixel coordinate of q in D′. We also
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Figure 7.3: Our fast cross bilateral upsampling scheme synthesizes a high-resolution
disparity map from the low-resolution BP stereo matching result on
CUDA.

use σc and σd as constants to threshold the color difference and filter size. We compute

the disparity of pixel Dp as:

Dp =

∑
q∈W Gd(p, q)Gc(p, q)D

′
q

Kp
, (7.1)

whereKp =
∑

q∈W Gd(p, q)Gc(p, q),Gd(p, q) = exp(−||p−q||
σd

), andGc(p, q) = exp(−||Ip−Iq||
σc

).

The complexity of cross bilateral upsampling (CBU) is O(NW ) where N is the

output image size and W is the filter window size. Therefore the dominating factor

to the processing time is the number of pixels that need to be upsampled, i.e., the

resolution of the high-res image in the brute-force implementation.

To accelerate my algorithm, we implement a fast CBU scheme that effectively

reduces the pixels to be upsampled. Paris et al. [79] have shown that the mid and low

frequency components of an image remain approximately the same when downsampled.

We therefore treat the high-frequency and the mid- and low- frequency components

separately. Our method first applies a Gaussian high-pass filter to identify the pixels

of high frequency in I and then uses a standard cross bilateral filter to estimate the

disparity values at only these pixels. We store the resulting disparity map as Dhigh.

We call this step the high-frequency processing module. In parallel, we downsample
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Ground Truth Bicubic Gaussian Ours

Figure 7.4: Comparison of my method and other upsampling schemes on synthesize
data. Both patches in the disparity map are upsampled from a resolution
of 30× 25 to 450× 375.

the color image to mid-resolution Imid, apply CBU between D′ and Imid to obtain the

mid-res disparity map Dmid; and subsequently upsample Dmid to Dhigh using standard

bilinear upsampling. We call this step the mid- and low- frequency processing module.

Finally, we perform high frequency compensation by replacing the disparity value at the

identified high frequency pixels Ĩ with Dhigh. Figure 7.3 shows the complete processing

pipeline of my algorithm. Compared with standard CBU, my scheme only needs to

upsample a small portion of the pixels and hence is much faster.

We also added a refining stage for sharpening the boundary regions and smooth-

ing the surface regions with a cross bilateral filter, after the unsampling is done. The

stage is basically the same as the upsamling stage except the input disparity map is

the same size as the color image. Since the output disparity map could be treated as

the input of another stage, this refining stage can be performed iteratively.

As shown in Figure 7.5, if the refining stage is not performed, the edges and

surfaces of the disparity map looks noisy due to the imperfection of the low resolution

disparity map and the textures in the color image. However, if the refining stage

contains too many iterations, then the disparities of one side of edges starts to bleed

104



(a) (b) (c)

Figure 7.5: Comparison of three results using different number of refining iterations.
Result (a), (b), (c) are using 0, 3, and 10 iterations respectively.

into the other side, which is the effect of over-smoothing. Therefore, a compromise

number of iterations must be chosen at run time, using my interactive parameter

interface (Section 8.6).

Note that the upsampled depth edges may not be consistent with the depth

edges compute using the high frequency map. Here we experimented with the following

solutions: 1) Use the unsampled depth edges. 2) Use the high frequency depth edges.

3) Blend the two results. We found out that we can preserve more accurate edges and

render better results using the second way.

7.2.3 CUDA Implementation.

We developed a GPU implementation of my algorithm on the CUDA archi-

tecture to tightly integrate with my CUDA BP stereo mapping algorithm. In my

experiments, we found that it is most efficient to assign one thread to upsample each

pixel in the disparity map. To further evaluate the throughput of my implementation,
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Bicubic Color ImageOur Approach

Figure 7.6: Comparison between my method and bicubic upsampling on real scenes.
The disparity map is upsampled from 320 × 240 to 640 × 480. Our
method preserves sharp edges and maintains smoothness, which is critical
to reliable DoF synthesis.

we upsampled 128×128 disparity maps with 1280×1280 color images. Our implemen-

tation achieves a processing speed of 22 ms per frame or 14 ms per megapixel with a

5× 5 filter window, a significant speedup to the CPU-based scheme [55] (which was 2

seconds per megapixel). To measure the accuracy of my scheme, we performed exper-

iments using various stereo data sets. In Figure 7.7, we show using the Teddy data set

that reintroducing high frequency compensation produces sharper edges and smoother

surfaces. Figure 7.4 illustrates my results in three regions on the Teddy data set. They

are upsampled from 30× 25 to 450 × 375. Compared with standard bicubic or Gaus-

sian upsampling, my method preserves fine details near the edges. It is important to

note that preserving edges while removing noise in the disparity map is crucial to my

DoF synthesis as DoF effects are most apparent near the occlusion boundaries. Figure

7.6 gives the results on an indoor scene using bicubic upsampling and my method.

To further measure the accuracy, we compared my estimation with the ground truth

by computing the mean squared errors over all pixels. Table 7.2 compares the error

incurred by my method under different upsampling scales on a variety of Middlebury

stereo data sets, and the results show that my method is reliable and accurate even

with very high upsampling scales.
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Figure 7.7: Comparison of the result with(right) and without(left) high frequency
compensation.

In my indoor and outdoor experiments, good results of disparity maps can be

achieved when there are 10 iterations in refining stage. Since the system runs at

interactive speed, it is impossible to use standard CBU to upsample the low resolution

disparity because it would take 0.1 second (10 frame per second) to compute a single

frame of resolution 640×480 with CUDA implementation. However with my fast CBU

framework, the speed quickly goes up to 40 frame per second with the downsampling

factor 2× 2.

7.3 Real Time DoF Synthesis

Once we obtain the high-resolution disparity map, we set out to synthesize dy-

namic DoF effects. Previous single image based DoF synthesis algorithms attempt to

estimate the circle of confusion at every pixel and then apply the spatially varying

blurs on the image. These methods produce strong bleeding artifacts at the occlusion

boundaries, as shown in Figure 7.8. In computer graphics, the distributed ray tracing

and the accumulation buffer techniques have long served as the rendering method for

dynamic DoF. Both approaches are computationally expensive as they either require

tracing out a large number of rays or repeated rasterization of the scene. Furthermore,

to apply ray-tracing or accumulation buffer in my application requires constructing
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Data sets
Upsampling Scales

20× 20 10× 10 5× 5 2× 2

Teddy 10.41% 3.56% 1.71% 0.52%

Plastic 8.36% 4.23% 2.05% 0.91%

Monopoly 11.76% 5.35% 2.96% 1.14%

Books 9.28% 6.12% 2.63% 1.02%

Baby2 5.76% 2.38% 1.61% 0.69%

Aloe 15.12% 7.83% 3.40% 1.17%

Cones 11.51% 5.87% 3.25% 1.28%

Art 13.47% 7.15% 3.43% 1.41%

Table 7.2: Pixels with disparity error larger than 1 under different upsampling factors
on the Middlebury data sets.

a triangulation of the scene from the depth map, which would incur additional com-

putational cost. In this paper, we adopt a similar approach to [132] by dynamically

generating a light field from the high-resolution video stream and its depth stream, as

shown in Figure 7.9. Our technique, however, differs in that we directly use the dispar-

ity map for warping and filtering whereas [132] builds upon the depth map. As follows,

we briefly reiterate the main steps of this light-field based DoF rendering technique.

7.3.1 The Lens Light Field

The light field is a well known image based rendering technique. It uses a set

of rays commonly stored in a 2D array of images to represent a scene. Each ray in

the light field can be indexed by an integer 4-tuple (s, t, u, v), where (s, t) is the image

index and (u, v) is the pixel index within a image.

Our first step generates a light field from the stereo pair. The high resolution

camera in my stereo pair is used as the reference camera R00.

To synthesize the light field, we use the high-resolution camera in my stereo pair

as the reference camera R00 (i.e., (s, t) = (0, 0)). We can then easily find all rays that

pass through a 3D point A in terms of its disparity γ from the reference view.
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(a) (b)

(c) (d)

Figure 7.8: Comparing results generated by image space blurring (a, c) and my light
field synthesis method (b, d). Our approach effectively reduces both the
intensity leakage (a) and boundary discontinuity (c) artifacts.

Assuming A’s image is at pixel (u0, v0) in the reference camera, we can compute

its image (pixel coordinate) in any light field camera Rst as:

(u, v) = (u0, v0) + (s, t) · γ (7.2)

We use Lout(s, t, u, v) to represent the out-of-lens light field and Lin(x, y, s, t) to

represent the in-camera light field. The image formed by a thin lens is proportional to

the irradiance at a pixel a [104], which can be computed as a weighted integral of the

incoming radiance through the lens:

a(x, y) ≈
∑
(s,t)

Lin(x, y, s, t)cos
4φ (7.3)

To map the in-lens light field to the out-of-lens light field, it is easy to verify that

pixel a(x, y) on the sensor maps to pixel (u0, v0) = (w − x, h − y) in R00. Therefore,
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Figure 7.9: We synthesize an in-lens light field (left) from the recovered high-
resolution color image and disparity map (right).

if we want to focus at the scene depth whose corresponding disparity is γf , we can

find the pixel index in camera Rst using Equation 7.2. The irradiance at a can be

approximated as:

a(x, y) =
∑
(s,t)

Lout(s, t, u0 + s · γf , v0 + t · γf) · cos4φ

To estimate the attenuation cos4 φ term, we can directly compute cos4 φ for each ray

(s, t, u, v). Notice that the ray has direction (s, t, 1). Therefore, we can compute

cos4 φ = 1
(s2+t2+1)2

.

7.3.2 CUDA Implementation

To synthesize the light field from the reference camera R00 and its disparity

map, we warp it onto the rest light field cameras using Equation 7.2. Note that inverse
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warping is impractical here because the disparity maps of target light field cameras are

unknown. Therefore we choose to forwardly constructing those cameras.

A naive approach would be to directly warp the RGB color of each pixel a(u0, v0)

in R00 onto other light field cameras. Specifically, using a’s disparity value, we can

directly compute its target pixel coordinate in camera Rst using Equation 7.2. Since

the CUDA architecture supports parallel write, we can simultaneously warp all pixels

in R00 onto other light field cameras.

Although the warping process is straight forward, attention needs to be paid to

the correctness of the light field. Since multiple pixels in R00 may warp to the same

pixel a in the light field camera Rst, a depth comparison is necessary to ensure the

correct visibility. Thus each light field camera requires an additional depth buffer. To

avoid write-write conflicts in the warping process, we use atomic operations. However,

current graphics hardware cannot handle atomic operations on both color and depth

values at the same time. To resolve this issue, we only choose to warp the disparity

value. We can easily index the RGB value for each light field ray using the stored

disparity value and the camera parameters. This solution requires less video memory

as the RGB value does not need to be stored in the light field.

Due to speed requirements, we can only render a small light field with 36 to 48

cameras at a 640 × 480 image resolution. The low spatial resolution leads to strong

aliasing artifacts due to undersampling. Since my reference view does not contain

information from the occluded regions, the warped light field camera images will contain

holes.

To reduce the image artifacts caused by undersampling and occlusions, we de-

velop a simple technique similar to the cone tracing method to pre-filter the reference

view [60]. Our method is based on the observation that out-of-focus regions exhibit

most severe aliasing artifacts and occlusion artifacts since they blend rays correspond-

ing to different 3D points.

Our method compensates for undersampling by first blurring the out-of-focus

rays and then blending them. A similar concept has been used in the Fourier slicing
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photography technique for generating a band-limited light field [77].

To simulate low-pass filtering in light field rendering, we first generate a Mipmap

from the reference image using a 3× 3 Gaussian kernel [61].

Gaussian Mipmaps eliminate the ringing artifacts and produce smoother filter-

ing results than the regular box-filters . We then integrate the Gaussian Mipmap into

the light field ray querying process.

Assume the scene is focused at depth df . For a ray (u, v) in camera Rst that

has depth value dr, we have a similitude relationship:

Clens/Cblurdisk = df/(dr − df) = (γr − γf)/γf (7.4)

where Clens is the diameter of the aperture and Cblurdisk is the size of the blur disk in

world space. The MipMap level for the ray can be calculates as:

l = log2(γr · Cblurdisk/N)

= log2(γr · (Clens · γf/(γrL− γf)) /N)

= log2(Clens · (γf − γr)/(B ·N)) (7.5)

where N is the number of samples, γr gives the pixel per length ratio which transform

the size of the ray cone Cblurdisk/N into number of pixels on the image.

7.3.3 Our Technique vs. Single-Image Blurring

Compared with single-image methods that apply spatially varying blurs, my

light field based DoF synthesis technique significantly reduces two types of boundary

artifacts. In instances where the camera focuses at the foreground, the ground truth

result should blend points on the background. Conversely, single-image filtering tech-

niques use a large kernel to blend the foreground and background pixels and hence,

produce the intensity leakage artifact. Consider a point Ab lying on the background

near the boundary, as shown in Figure 7.10. Our method attempts to blend rays origi-

nating from the background. Although my technique can only access a portion of them

Due to occlusions, it still produces reasonable approximations.
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Figure 7.10: Illustrations of two types of boundary artifacts. See Section 7.3.3 for
details.

In instances where the camera focuses on the background, the ground truth

result should blend both the foreground and background points. Single-image filtering

techniques, however, would consider Ab in focus and hence directly use its color as

the pixel’s color. In this case, the transition from the foreground to the background

appears abrupt, causing the boundary discontinuity artifacts. Consider a point Ab on

the background near the occlusion boundary in the image as shown in Figure 7.10.

Since rays originating from both the foreground and background are captured by the

synthesized light field, my technique will produce the correct result.

Figure 7.8 compares the rendering results using my method and the single-image

filtering approach on an indoor scene. Our technique exhibits fewer visual artifacts

compared to the single-image filtering method, especially near the boundary of the

girl. When examining the boundary of the sweater, the single-image method blurs the

black sweater regions into the background and thus causes color bleeding, whereas my

technique prevents such leakage. When focusing at the background, the single-image

method exhibits discontinuous transitions from the girl to the background while my

method preserves the smooth transition.
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(a) (b)

(c) (d)

Figure 7.11: Results of synthesizing changing aperture sizes. The aperture size grad-
ually decreases from (a) to (d).

Our method also correctly preserves the boundaries between the in-focus and

out-of-focus regions when synthesizing changing aperture sizes. As shown in Figure

7.11, we fix the focus at the woman. With the aperture fully open in (a), the blur level

decreases as we decrease the aperture size.

7.4 Applications: Real-time Tracking and Racking Focus

In cinematography, a rack focus is the practice of changing the focus of the lens

during a shot. The term can refer to small or large changes of focus. If the focus is

shallow, then the technique becomes more noticeable. In professional films, a camera

assistant called a focus puller is responsible for rack focusing. The director Richard

Rush developed the technique in his documentary film ”The Sinister Saga of Making

The Stunt Man” in the 1960s. Our system provides real-time dynamic DoF effects

which is comparable to racking focus of the movie camera.
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Figure 7.12: Results using my tracking algorithm. Notice that with the auto-
refocusing functionality, the cat on the right hand side of the girl is
becoming sharper as the toy car moves closer to its plane.

A tracking focus is the practise of keeping the object of interest in focus by

tracking its 3D location. Tracking focus aims to resolve the challenging task of focusing

exactly on moving objects while shooting a dynamic scene. Since the resolution of

movie camera’s viewfinder is relatively small, it is hard to tell whether the object of

interest is sharp or blurry until the postprocessing stage. Our system couples the

tracking on the color image with the tracking on depth map to location the object in

3D to dynamically change focus with the moving object.

7.4.1 Tracking

Like all the other classic tracking algorithms, we model my problem by reasoning

probabilistically about the world based on the Bayesian rule. Since we have two images

as the input, the posterior probability can be represented as

p(W |I1, I2) = p(I1, I2|W )p(W )

p(I1, I2)
,
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where W is the latent scene, p(I1, I2) is treated as normalizing constant, I1 and I2 are

the images seen, and

p(I1, I2|W ) = p(I1|I2,W )p(I2|W )p(W ),

Here we use the maximum a posteriori estimate to find the result. Since the underline

scene W does not change during one shot, p(I1|I2,W ) could be interpreted as the

warping result from one of the images using the disparity map. Therefore, instead of

dealing with multiple images, we use both images and a disparity map as inputs. The

result is estimated by argmaxWp(W |I1, I2).
We use Sum of Squared Differences (SSD) as the error function in my calculation.

The estimated location of object in frame i is computed using the following algorithm:

Algorithm 2 Compute current tracking postion

if i = 0 then
pos[i]← pos[i]

else
MinError ← INFINITE
while p← nextposition do
n← 0
for j = i→ max(i−MaxLength, 0) do
e← e +DisparitySSD(p, pos[i])× ColorSSD(p, pos[i])
n← n + 1

end for
e← e/n
if e < MinError then
MinError ← e
pos[i]← p

end if
end while

end if

With the additional disparity information, the tracking result becomes very

stable even though the object of interest and the background have similar colors, as

shown in Row 1 of Figure 7.12. The search of tracking position is also parallelized with

CUDA, so the computation overhead of this step is negligible.
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Figure 7.13: The real time DoF effects (middle) and disparity map (right) given by
my system after fine tuning the parameters using my interface (left).

7.4.2 Auto-Refocusing

With the object of interest being estimated on certain frame i, we assume that

all pixels pij around pixel j inside the object should have the same disparity. A straight

forward approach will be calculating the focusing disparity value Disp by averaging all

disparity values in this region. The result, however, is subject to noise and not robust

to pixels which are incorrectly marked as the object. To overcome these problems, we

first assign different weights for pixels. Therefore, Disp is computed by

Disp =

∑
j Dijwij∑

j wij
,

where Dij is the disparity of pixel pij on frame i and wij is the weight for pixel pij. The

straight forward approach is assigning constant weights for all pixels. Note that user

is defining the object of interest by a rectangle, pixels with different disparities or even

occlusions may appear on the boundary when shooting the video. To make my disparity

computation robust, here we use Gaussian weight. For each pixel in the object, we keep

track of the previous assigned disparity. Since my system runs at interactive speed, we

can safely assume that large disparity jumps do not occur on any pixel. If the difference

between the previous and current disparities is larger than a certain threshold, we claim

that this pixel is noisy and do not use it in the computation of current focused disparity

Disp. Row 2 of Figure 7.12 shows results of my auto-refocusing algorithm. The moving

car stays in focus while the out of focus regions are getting sharper, such as the girl
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Figure 7.14: Screen captures of live video streams produced by my system on both
indoor (top two rows) and outdoor (bottom row) scenes.

and the cat, or more blurry, such as the tablecloth in the front, as the car moves closer

or further away to their planes, respectively.

7.5 Results and Discussions

Our hybrid-resolution stereo system is connected to a work station through a

single PCI-E Firewire card. The workstation is equipped with a 3.2GHz Intel Core i7

970 CPU, 4GB memory and an NVIDIA Geforce GTX 480 Graphic Card with 1.5GB

memory. We implement all three processing modules (the disparity map estimation,

fast CBU, dynamic DoF rendering) using NVIDIA’s CUDA 3.1 with compute capability

2.0. Our system runs at the resolution of 640 × 480 with 15 fps. Compared with a

equivalent CPU implementation at 0.2 fps, the overall speed up is over ×30. Table 7.3
gives detailed speed up of each component in my system.

A crucial step in my real-time stereo matching module is choosing the proper

parameters (e.g., the weight for the smooth/compatible terms of the energy function)
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to fit different types of scenes (indoor vs. outdoor). We have developed an interface

to dynamically change the parameters, As shown in Figure 7.13.

We have conducted extensive experiments on both indoor and outdoor scenes.

We first demonstrate my system on indoor scenes with controlled lighting. Figure 7.14

row 1 shows four frames captured by my system of a girl drinking coffee while reading.

The coffee cup in the scene is textureless and very smooth. Our fast CBU scheme,

however, still preserves the disparity edges, as shown in Figure 7.14 row 1. We then

dynamically change the depth of the focal plane: column (a) and column (d) focus

on the front of the table, column (b) focuses on the girl, and column (c) focuses on

the background. Notice how the blur varies and the in-focus regions fade into the

out-of-focus regions.

Figure 7.14 row 2 displays a scene of a girl moving a toy car on a table. The

surface of the car is specular, and the background and car have similar colors, making it

challenging to prevent the disparity of the background from merging with the disparity

of the car. Moreover, the motion of the car is towards the camera, causing the body of

the car to have several different disparities. This makes labeling each pixel using stereo

correspondence methods even more difficult. Nevertheless, my algorithm preserves the

edges of the car when it is in focus and correctly blurs portions of the scene outside

of the focal plane. Our system performs well indoors because the background distance

is often limited, therefore allowing one baseline to produce accurate disparity labels

for the entire scene. In addition, artificially lit indoor scenes with diffuse walls and

Component CPU GPU

Depth Estimation 200 ms 30 - 50 ms

Bilateral Upsampling 100 ms 5 ms

Light Field Rendering 200 ms 15 ms

Table 7.3: Speed up of each component in the system.
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surfaces tend to have moderate dynamic range and have few poorly lit or saturated

regions.

Indoor scenes undoubtedly aid the performance of my system. Our experiments

on outdoor scenes, however, show promising results as well. Row 3 of Figure 7.14 shows

an outdoor sequence with a distant background under dynamically varying lighting

conditions. Notice that in column (a), the image is brighter than the rest of the

frames in the sequence and the background contains noticeable shadows. In addition

to incoherent illumination, large portions of the scene such as the sky and the ground

are textureless, making it difficult to achieve robust stereo matching. Since my system

allows us to dynamically change the camera baseline, we use its real-time feedback to

tune the parameters and increase the camera baseline to obtain a satisfactory disparity

map, as shown in the supplementary video. The use of large baseline may lead to holes

near the occlusion boundaries on full-resolution images. These holes are, however, less

significant in low-resolution stereo pairs and my upsampling scheme is able to borrow

information from the color image to fill in the holes. The extracted frames show that we

am able to correctly change the focus between the moving targets in both foreground

and background.

7.6 Discussions and Future Work

We have presented an affordable stereo solution for producing high quality live

DoF effects. Our system shows promising results on indoor and outdoor scenes although

it still has several limitations. First, 15 fps is a low frame rate and our resolution of

640× 480 precludes our system from immediately being used in high quality HD video

applications. Using multiple GPUs may address this problem as they allow greater

exploitation of inherent parallelism in our computational pipeline. Second, although

the high quality sensor and lens system on our camera pair significantly reduces image

noise and optical distortions, this comes with a higher price. While less expensive than

existing commercial movie cameras, our system is still twice the cost of most base level

video cameras. Integrating existing real-time techniques to correct optical distortions
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Figure 7.15: Observed artifacts (high lighted with red rectangle) at specular regions
on a computed disparity map.

and sensor noise into our pipeline would make it feasible to use lower cost webcams

instead of the Firewire Flea cameras.

Since our approach is stereo-based, it suffers from the same problem in classical

stereo matching. It is well known that regions without any texture are difficult to

handle. Results using our Belief Propagation scheme exhibit visual artifacts in such

regions, especially for outdoor scenes which contain the sky in the background. Recall

that our bilateral upsampling algorithm assumes that adjacent boundary regions of

different depth should have different colors to avoid color bleeding. In practice, when

a large filter kernel is used on on adjacent regions with difficult but still similar colors,

our results still exhibit the bleeding artifacts. Occlusions boundaries of objects are

also problematic since it is extremely challenging to synthesize the occluded regions

when warping the central view to other views in the light field. Specular highlights,

due to view dependency, can also introduce artifacts, as shown in Figure 7.15. Finally,

translucent objects such as a person’s hair or face boundary can exhibit visual artifacts,

as shown in Figure 7.16. A potential solution is to apply image matting to first extract

the region and then separately synthesize the foreground and background.

Our other future efforts include adapting our system to functional applications

such as privacy protected surveillance. We plan to demonstrate the usefulness of our

system in urban spaces to limit the focal plane to public areas, e.g., the sidewalks, while
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Figure 7.16: Observed artifacts at translucent regions.

blurring more distant private areas like the interior of homes. Current urban surveil-

lance networks are augmented with real-time recognition algorithms to detect illegal

activity. When illegal activity is detected, our system could provide more information

to law enforcement by removing the DoF effect using the stored disparity map stream

for subsequent scene reconstruction. We can also Since our approach is leverage future

gains in ubiquitous computing to produce a truly mobile platform which utilizes, for

example, two camera phones for producing DSLR quality imagery. On the algorithm

side, instead of performing a straight forward high-pass Gaussian filter to acquire high

frequency information in the image, we can also perform other sophisticated frequency

decomposition method such as wavelet transform.
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Chapter 8

STEREO BASED LIGHT FIELD CAMERA : MIRROR BASED
APPROACH

In this Chapter, I present an alternative light field imaging solution using a

catadioptric mirror array and discuss its unique advantage on low light imaging.

8.1 Catadioptric Light Field Camera

A classical catadioptric camera positions a regular pinhole camera in front of

a curved mirror to capture images with a much wider field-of-view. Recent develop-

ments further replace the single mirror with a mirror array [34, 108] so that a single

photograph will contain multiple views towards the scene. This new catadioptric array

photography (CAP) technique is capable of recovering scene depth from a single image

[34, 50] and has shown promising results in special photographic effects such as dy-

namic Depth-of-Field [108]. In this paper, we present a new technique that uses CAP

for high quality imaging under low light.

Imaging under dark illuminations has been challenging since it is difficult to

simultaneously preserve intrinsic lighting and maintaining low noise. The simplest

approach of increasing the exposure through aperture, shutter or flash produces un-

desirable visual artifacts: wide apertures lead to shallow depth-of-field, long shutters

cause motion blurs [78], and the use of flash corrupts intrinsic lighting and generates

sharp shadows [36]. The seminal flash/no-flash photography [8, 82] captures one flash

image and one non-flash image at the same viewpoint. We show that CAP can produce

similar results without using the auxiliary lighting(Fig. 8.2).

Capturing the scene from multiple viewpoints in a single shot has a number of

advantages. Each view is slightly different from the other therefore providing depth
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cues for correspondence matching across views. At the same time, the similarity across

the view affords noise reduction [136]. In addition, all views are captured in a single shot

and therefore naturally resolves synchronization and motion blurs. An apparent short-

coming, however, is the sacrifice of resolution: the effective resolution will be reduced

to 1/N of the full camera resolution where N corresponds to the number of mirrors.

For static scenes, we address this issue by using a multi-resolution fusion approach:

the users can further zoom in the camera to capture only the central mirror at a much

higher resolution and then apply our depth-guide image denoising/superresolution.

The recovered scene geometry can also be used for other imaging applications.

8.2 Related Work in Low-Light Photography

Photography under poor lighting conditions is a long standing problem and has

attracted a lot of attention from image processing, computer vision, and computa-

tional photography. We categorize existing solutions into two categories: pure image

processing techniques and computational photography/imaging techniques.

8.2.1 Image Processing

The image denoising literature is huge and we refer the readers to the survey

by Buades et al. [22]. We here only review the most relevant ones.

8.2.1.0.1 Single-image Denoising

These approaches aim to reduce image noise using an image captured from a

single viewpoint. The wavelet-based method proposed by Portilla et al. [85] had been

the state-of-the-art until the more recent non-local patch-based algorithms such as

BM3D [23, 27, 134]. Built on the concept of non-local means [27], BM3D exploits self-

similarity within an image and applies the optimal Wiener filtering for image denoising.

However, these algorithms can break down when the image does not exhibit such self-

similar patterns.
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8.2.1.0.2 Multi-image Denoising

To resolve the lack of similarity issue, a number of approaches attempt to lever-

age multi-view acquisitions. Vaish et al. [117] explored the problem of using a camera

array for denoising by exploiting redundancies from multiple viewpoints. Heo et al. [46]

combined stereo matching with non-local denoising on each view of a stereo pair. Zhang

et al. [136] extended the two-view stereo approach to N-views by selecting patches from

multiple cameras with depth constraints and approximating the noiseless patch using

Principal Component Analysis or Tensor Analysis. While producing promising results,

their method is not directly applicable to dynamic scenes. Bennett and McMillan [15]

demonstrated a per-pixel exposure model to enhance underexposed visible spectrum

video through spatial temporal bilateral filtering. Their model assumes the difference

between consecutive frames is small whereas we allow strong disparity between the

mirror views.

8.2.2 Computational Photography

We develop a computational photography solution that acquires multiple views

in a single shot and then denoise the images. Over the past decade, a number compu-

tational camera systems have been presented to tackle the problems of image denoising

or image enhancement. A comprehensive survey can be found at [110].

8.2.2.0.3 Active Illumination

Flash based photography [36, 82, 8, 56] uses images captured under flash to

enhance the ones without flash using spatial filters or optimization schemes. The

seminal work by Eisemann and Durand [36] and Petschnigg et al. [82] used the non-

flash image to preserve the ambiance of the original lighting while inserting sharpness

from the flash image. Krishnan and Fergus [56] replaced the regular flash with the UV

spectrum flash to reduce the bursts of light. They also exploited using the correlations

between images captured at different wavelengths for robust denoising. We, in contrast,

aim to completely eliminate flash lights during acquisition.
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Figure 8.1: The processing pipeline of our CAP-based low light imaging technique.
We adopt iterative processing: the denoised results are used to improve
correspondence matching and vice versa.

8.2.2.0.4 Catadioptric Mirror Array

Our solution is inspired by the recent catadioptric mirror array for omni-directional

computer vision [32, 7, 59]. In these systems, a pinhole camera is positioned in front

of an array of curved mirrors to acquire the scene from multiple viewpoints. Each

mirror view corresponds to a multi-perspective camera, which adds challenges to cor-

respondence matching across views. To address the issue, Ding et al. [34] developed

a mirror surface decomposition scheme by approximating the mirror camera as piece-

wise General Linear Cameras, a class of primitive multi-perspective cameras that have

closed-form projections. Taguchi et al. [108] presented a novel Axial-Cone decompo-

sition scheme that is particularly effective for rotationally symmetric mirrors. Their

decomposition models each mirror camera as a set of pinhole cameras whose center-

of-projection (CoP) lies on the rotational axis. Agrawal et al. [9] derived the analyt-

ical forward projection for axial non-central dioptric and catadioptric cameras. They

proved that a closed form solution can be found by solving a 4th degree equation for

forward projecting in case of spherical mirrors. By far, the applications of catadioptric

systems have been focused on 3D scene reconstruction and image-based modeling and

rendering. We investigate using it for low-light imaging.
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8.3 Catadioptric Array Photography

8.3.1 System and Algorithm Overview

We first construct a single shot catadioptric camera system. As shown in Fig.

8.2, our prototype uses an array of 7 identical convex mirrors coated with enhanced

Aluminum. Each mirror is a spherical cap of radius 51.68mm and height 6.45mm to

avoid self-reflection when tightly packed together. We employ a Canon T2i digital

camera with focal length 75mm and 300mm to capture the image of the mirror array

and the central mirror respectively at the resolution of 3400× 3500 (70% of the sensor

resolution). We can also use different mirror setups to adapt other sensor types.

Compared with the multi-view acquisition systems, our configurations have

many advantages. First, we only need to use a commodity camera without any

modification. The captured multi-view multi-perspective (MVMP) image is also self-

contained for processing, i.e., each denoised frame can be generated from a single shot.

Second, the system is easy to setup. One only needs to set up the mirror array in front

of the scene and orient the camera to capture the desirable views. Finally, our system

is inexpensive to build and does not require complex setups. We calibrate camera and

the mirror using a checkerboard during acquisition.

Fig. 8.1 shows our processing pipeline. We start with performing single-image

based denoising on each captured MVMP image and camera calibration in parallel.

Next, we model the ray geometry of the scene and find the voxel-pixel correspondence

with forward projection. We then conduct dense stereo matching via graph cuts.

Finally, we denoise each patch by using its corresponding patches across mirrors. We

can iterate the steps to refine the results.

8.3.2 Stereo Matching

In order to estimate correspondences across different views, we adopt the space

carving approach. Most existing algorithms in this category can be considered vari-

ations of the foundational framework by [57], in which a set of N perspective input

images are used to determine 3D volumetric scene geometry. A crucial step is to
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Figure 8.2: The catadioptric mirror array and our CAP setup.

project each voxel onto the mirror, a forward ray-tracing problem that does not have

closed form solutions for general mirrors. Thanks to the special property of spherical

mirrors, we adopt the closed form solution by Agrawal et al. [9] to efficiently forward

trace the rays.

8.3.2.1 Forward Projection

Given the position (0,0,d) of the camera CoP and a 3D point P=(Xp, Yp, Zp),

our goal to find the image of P on the camera sensor via a single reflection on the

spherical mirror M. We denote the reflection point m as (x, y) on plane Π formed by

CoP, P , and center of M. According to the derivation by Agrawal et al. [9], we can

compute y by solving the following 4th order equation:

√
X2

p + Y 2
p (r

2(d+ y)− 2dy2)2 − (r2 − y2)(r2(d+ Zp)− 2dZpy)
2 = 0.(8.1)

And x = ±√r2 − y2. Therefore, for each P in the scene, we can instantly get the cor-

responding incident ray v from the camera by linking the CoP and m, and subsequently
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map P onto a pixel on the sensor by intersecting v with the sensor plane.

8.3.2.2 Voxel-Pixel Mapping

Next, we show how to use the forward projection to reconstruct the scene. We

first partition the 3D space into voxels by placing a virtual perspective camera close to

the central mirror and uniformly discretize its viewing frustum . Next, for each voxel

in the viewing frustum, we find the corresponding pixel on the captured image using

the forward projection. Finally, we map the problem of reconstructing scene geometry

onto a graph-cut framework. Specifically, We first build a X×Y graph (X and Y are

the user defined resolution of the virtual perspective camera) and loop over all depth

values in the viewing frustum of the virtual perspective camera. For each depth value

Di, we reassign the data term Dixy and smoothness term of Sixy for each node Nixy

and perform max-flow min-cut algorithm. We select the optimal labels of the nodes in

the graph as the depths of the pixels on the captured image by the virtual perspective

camera. Note that the captured low light image is noisy and affects color consistency

of the data term, we first apply a single image denoising process (BM3D in our case)

on the captured image to get an initial guess of the denoised result. Fig. 8.3 shows

two depth maps generated by our algorithm (after 5 iterations) for synthetic scenes.

8.3.2.3 Pixel-Pixel Correspondence

With the estimated Voxel-Pixel Correspondence and the depth map, for a given

pixel p in a given mirror M , we can find the corresponding pixels in other views.

Specifically, for each voxel Vi corresponding to p, we map it onto the depth map of the

virtual perspective camera and check if the depth of Vi is coherent with the value on

the depth map. Note that multiple Vi could be found in this step, we choose the Vi with

the closest distance dr to M since all the voxels further away should be occluded by Vi.

Finally, we use the Voxel-Pixel Correspondence to locate all images of V across mirrors.

Inaccuracies in the recovered depth map due to noise can cause problems when finding

Vi. We address the problem by using a search window to find the corresponding patches
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Figure 8.3: Our recovered depth maps of three synthetic scenes using the MVMP
space carving scheme.

in other views (Section 8.4.1). Further, since our ultimate goal is noise reduction, as

far as the correspondence maps are relatively accurate, the outliers will be assigned

with a smaller weight in our denoising method.

8.4 MVMP Denoising

Given our estimated pixel correspondences, we set out to denoise the captured

MVMP image. Our approach is inspired by recent Multi-View image denoising [134].

8.4.1 Patch Matching

Similar to conventional patch-based denoising, for each pixel p in a mirror M

on the image, we first select the n × n patch (n is user defined) centered at p as the

reference patch br and then search for all similar patches within M and across other

mirrors.
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(a) (b) (c)

Figure 8.4: Demonstration of patch warping on two scenes (one synthetic, one real)
under the MVMP context. (a) Reference patch on the central mirror.
(b) Corresponding patch on another mirror without considering patch
warping.[134] (c) Corresponding pixels found with our approach.

To find similar patches within M , a brute-force approach is to consider all the

patches bi corresponding to b over different views with the depth constraint. Although

it works well in the perspective multi-view case, it is less optimal in the MVMP case

because the warping of bi from one view to another is non-linear (perspective). This

can be demonstrated by purposely select br to check the similarity with itself. As

shown in Fig. 8.4(b), without patch warping, on another mirror, pixels from an alien

object are incorrectly selected to compute the weight, hence degrading the weight of

the correct patch.

We resolve the problem by using a more robust patch matching scheme. Instead

of locating the corresponding patch with the depth of p directly, for each pixel q in

patch b, we find the corresponding pixels in other views to compensate for the severe

deformation of the patch. As shown in Fig. 8.4(c), given br, the corresponding pixels

will be selected correctly from the other mirrors. The distance from b to br is then

computed as:

Φ(b, br) =
∑
i

∑
q∈bi
||q − qr||2, (8.2)

where qr denote a pixel in br, and the L2 norm computes the squared color difference
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Ground Truth Noisy Image BM3D (23.08)  Low Resolution (22.79) Multi-Resolution (24.63)

Figure 8.5: Comparison of different denoising schemes on a logo scene.

between the two pixels. The weight of b is then computed by exp{−Φ(b,br)
2σ2 }, i.e., the

smaller the distance, the higher the weight. We determine σ by estimating noise level

of the image. To make use of similar patches over all mirrors, we first map p onto

other mirrors based on the pixel correspondences. Within each mirror, we perform our

MVMP matching method to weight patches based on the new pixel location. Assume

p is captured by n mirrors, and we select k most similar patches from each mirror, then

we get kn patches for denoising p.

8.4.2 Patch-based Denoising

Assuming all kn patches have a similar underlining structure, to denoise each

pixel p on the captured image, our approach takes advantage of the recent patch

based denoising using Principal Component Analysis (PCA) [136]. Instead of trying to

cancel out the noise on the dimension of the patch itself, we assume that the noiseless

patch lies in a lower dimensional subspace to increase the robustness against outliers.

Specifically, we first find the dimensionality of the subspace by matching the average

squared residuals of noisy patches and the denoised patches to the noise variance, then

estimate the subspace by minimizing the difference between the noisy patches and the

denoised patches. We choose the PCA based approach simply because it generates the

highest PSNR during our synthetic experiments.

Once we conduct patch-based denoising to all mirror images, we then re-estimate

the depth map and use the refined depth map to re-apply patch-based denoising. To

determine the rounds of iterations that would be needed, we measure the difference
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between the results of two consecutive rounds and if it is small enough, we stop the

iteration and output the final image. In all our experiments, our first iteration use the

BM3D denoised results to estimate the depth map and we find that in nearly all cases

it takes less than 5 iterations for our algorithm to converge.

8.5 Multi-resolution Enhancement

A major disadvantage of our CAP photography is the loss of resolution. With 7

mirrors covering 12M pixels on the sensor, the denoised result has only less than 1.8M

pixel resolution. To compensate that, we present a multi-resolution denoising scheme.

A closely related work is the image deblurring with blurred/noisy image pair technique

developed by Yuan et al. [133]. Their model, however, does not apply directly to our

problem since they use an image pair with the same resolution.

Our strategy is to zoom in onto the central mirrorM and capture a full resolution

image of M without changing the CoP of the view camera, i.e. the ray geometry

remains the same for the central mirror but is sampled at a much higher resolution.

We denote the low resolution image of M as Il and full resolution image of M as Ih.

Our approach is to denoise Ih by imposing the denoised Il as a prior.

Given the denoised Il, we find similar patches of a reference patch brh at pixel

p within Ih, and use them to denoise p. The simplest approach is to first map all

patches to Il and then compute the similarities. This approach is robust against large

noise on Ih with the expense of accuracy on edges, due to the low resolution of Il. Our

method improves this basic approach by combining the distances on Il and Ih so that

only patches close to br on both Il and Ih are treated as similar ones. Specifically, we

compute the weight of each patch bh in Ih by:

w(bh) = exp{−Φ(bh, brh)
σ2
h

} exp{−Φ(bl, brl)
σ2
l

}, (8.3)

where bl and brl denote the corresponding patches of bh and brh in Il respectively. σh

is determined by the noise level of Ih and σl is computed from the resolution difference

between Ih and Il. To denoise each pixel on Ih, we select k most similar patches and
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(a) (b) (c) (d) (e) (f) (g)

Figure 8.6: Comparison of our result with BM3D on a synthetic scene. (a) The
ground truth images. (b) The synthetic noisy images. (c) Our denoised
low resolution results. (d), (e), (f), and (g) are the closeup views of the
highlighted regions from the noisy images, BM3D denoised results, our
results, and the ground truth respectively. PSNR (computed by cropping
out the central view): Ours: 33.25, BM3D: 30.78.

conduct our PCA based denoising. Fig. 8.5 shows our results comparing with BM3D

on a synthetic scene.

8.6 Experimental Results

We have conducted thorough experiments of our CAP-based low light imaging

on both synthetic and real low light scenes. For synthetic scenes, we render the re-

flections of 7 spherical mirror caps of radius 1 and height 0.2588 (which covers 30◦ of

the sphere) from a perspective camera of resolution 1200× 900. To emulate low lights,

for each pixel on the synthesized noisy image, we add Poisson noise using a Poisson

random number with mean and variance both equal to 1
18

of the clean pixel intensity.

To demonstrate the robustness of our approach, we compare our results with the ones

from BM3D (Fig. 8.6), the de facto benchmark for image denoising. In all following

examples (synthetic or real), we apply BM3D to the complete image rather than a small

mirror view for fairness. In the horse scene (Fig. 8.6), our technique achieves a higher

PNSR ratio than BM3D. Further, CAP is able to better preserve fine details as shown

near the ears of the horse and around the triangle patterns on the background. This

is mainly because BM3D only attempts to locate the nearby similar patches whereas

CAP establishes and then utilizes similar patches across mirrors.

For real scenes, the setup of the CAP system is discussed in Sect. 8.3.1. We
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(a) (b) (c) (d)

Figure 8.7: Results on a stair scene. (a) The noisy input image. (b) The BM3D
result. (c) Our CAP-based low light imaging results. (d) The reference
image acquired with a long exposures. (d) Recovered depth map.

use lens speed F-14 to minimize defocus blurs with a high ISO of 6400. To capture

the mirror array images and later the zoomed-in central mirror image, we use 100 and

300 mm focal lengths. For static scenes, the view camera captures at a resolution of

5184 × 3456. However, since the catadioptric mirror array only occupies a portion

rather than the complete image, the effective CAP resolution is reduced to about

3400× 3500 or 12M pixels. For dynamic scenes, we use the high definition video mode

on the camera that captures at a resolution of 1920× 1080 at 60 fps. For static scenes,

we capture the images without using a tripod and use 1/60 second shutter speed to

minimize motion blurs. For indoor scenes, we simply use the image captured under

flash as the reference image. For outdoor scenes, we capture the reference image by

facing the camera directly towards the scene using a tripod with a slow shutter (6

seconds).

8.6.0.0.1 Static Scenes

Fig. 8.7 shows our results on a real static scene of a building. Fig. 8.7(a) shows

the central mirror image of the raw data. The image exhibits high levels of noise.

135



For example, comparing with the long exposure result (c), the grids of the window

and the door are corrupted. We then apply our MVMP denoising algorithm. As the

surfaces are mostly Lambertian, our multi-perspective multi-view stereo algorithm is

able to robustly establish correspondences. Fig. 8.7(b) shows the denoised central

mirror image and we are able to effectively remove the noise and faithfully recover

details such as the grids of the window and the door using multiple views.

In Fig. 8.8, we show a candle scene similar to the teaser in the flash/no-flash

paper [36]. By applying our MVMP denoising and super-resolution schemes, we are

able to produce the warm atmosphere under ambient lighting whereas the flash image

leads to harsh, opaque lighting. Further, our technique does not require special han-

dling of shadows caused by flash. Our MVMP result already shows similar quality with

the result achieved by applying BM3D and downsampling on the close up view of the

central mirror at resolution of 3000× 2500. Moreover, our multi-resolution denoising

result is able to recover fine details such as the characters on the stones which could

only be captured by using a long exposure on the close up view of the central mirror.

Our correspondence matching, however, fails on the wine glass as we can only handle

Lambertian surfaces. It is worth noting that even though our low-resolution central

mirror image contains such artifacts near the specular wine glass, the super-resolution

scheme is able to partially reduces the artifacts thanks to the cross-bilateral weighting

scheme.

In the chess scene (Fig. 8.9), our result faithfully preserves the intrinsic color

of the chessboard and the chess pieces whereas flash illumination easily corrupts the

color and introduces shadows. Although flash/no-flash photography can be potentially

used to address this issue, it will be difficult to resolve artifacts caused by strong

discontinuities around shadow edges.

8.6.0.0.2 Dynamic Scenes

Fig. 8.10 shows our result on a real dynamic scene. This fountain scene is

particularly challenging: to reduce motions, we have to use fast shutters; however, the
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Low Res. Noisy MVMP Denoised Full Res. BM3D 

Multi-Res. Denoised High Res. & Long Exposure

Figure 8.8: The CAP-based results on a candle scene.

environment lighting is sufficient, therefore the resulting video stream is highly noisy.

Recall that none of the traditional approaches would work well in this scenario: long

shutter leads to motion blurs, wide aperture leads to defocus blurs, and flash cannot

be continuously applied to videos. By applying our CAP-based low light photography,

we are able to not only acquire blur free video streams but also significantly reduce

the noise and at the same time preserve fine details. A downside of our approach,

however, is that we are unable to recover a high resolution video as our multi-resolution

enhancement technique is only suitable for static scenes. We refer the reviewers to the

supplementary videos for more results.

8.7 Discussions and Future Work

We have presented a low-light photography scheme based on a relatively simple

and reusable catadioptric array setup. Our post-processing technique first finds pixel

(patch) correspondences across multiple mirror views on the photography and then

conducts MVMP denoising and multi-resolution enhancement to produce high quality,
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Low Res. Noisy Input MVMP Result

Full Res. Flash-Non Flash Multi-Res. Result

Figure 8.9: Results on a chess scene compared with Flash-Non Flash approach focus-
ing on the central mirror at resolution of 3000× 2500 and downsample.

high resolution imagery while preserving intrinsic lighting.

8.7.0.0.3 CAP vs. Light Field Photography

Similar to CAP, Light Field Photography (LFP) also aims to capture scenes

from multiple views in a single photograph. A significant advantage that LFP has

over CAP is that each microlens image in LFP directly corresponds to a perspective

image and therefore multi-view stereo matching can be directly applied to establish

pixel (patch) correspondences. This would avoid the complex multi-perspective back-

projection step in CAP. However, there are a number of factors that prohibit the

direct use of LFP in low light imaging. First and foremost, the aperture size of each

microlens “camera” is ultra-small. For example, the commercial light field camera

Lytro uses a main lens with aperture F/2. However, when coupled with a dense

microlens array (consisting of thousands of microlenses in Lytro camera ), the effective

aperture size drops to f/2 (f < F
100

). The ultra-small aperture will lead to low SNR and

add significant challenges to any state-of-the-art denoising algorithm. Second, while our
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Figure 8.10: Comparison of CAP-based solution vs. Flash photography on dynamic
scenes. (Left) The raw noisy input image. (Mid) Our CAP-based imag-
ing results (gamma corrected for the fountain scene to match the inten-
sity with long exposure). (Right) Images acquired with long exposure
(top). More results can be found in the supplementary video.

CAP supports dynamic zoom-in/zoom-out for trading off between spatial and angular

resolutions and super-resolution, LFP does not support similar mechanism. In fact,

the light field super-resolution remains as the one of the most challenging problems in

computational photography.

Our CAP low-light photography also has to use a relatively small aperture

(F/14) to avoid multi-perspective defocusing [33]. However, unlike LFP, the aperture

size does not scale down by the number of mirrors, i.e., each mirror has the same aper-

ture F/14, or at least 51 times larger than the microlens camera in Lytro. Therefore,

CAP fits better for low-light photography. It is worth noting that if future LFP can

accommodate a smaller (and controllable) set of microlenses, e.g., with F/2 in LFP

and no more than one thousand microlenses, it would be able to achieve comparable

performance to CAP.

8.7.0.0.4 Future Directions

There are a number of future directions that we plan to explore. As mentioned

above, our CAP still uses a small aperture to avoid defocusing artifacts. However, it

also boosts the noise level due to insufficient light. In the future, we plan to study the

tradeoff between defocus and denoise in CAP. Recent studies [96, 135] have shown that

defocus may be a better option than denoise and we will investigate which approach is

more suitable for our super-resolution algorithm. In addition, our current setup only

uses a single view camera. For dynamic scenes, our approach can effectively denoise
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but cannot super-resolve. An important future direction is to use an auxiliary camera

to capture the high resolution video stream and fuse it with our denoised low-resolution

videos.
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Chapter 9

CONCLUSION AND FUTURE WORK

9.1 Conclusions

In this dissertation, I have presented new image processing algorithms and cam-

era designs to improve the spatial, angular, and temporal resolution of light field imag-

ing.

9.1.1 Spatial Resolution

To improve the image resolution of the light field camera, we have presented a

well-principled plenoptic demosaicing and rendering framework, which preserves more

high frequency information from the captured light field and generates less aliasing

artifacts compared with the classical approach.

Our framework does not apply demosaicing directly to the image captured by

the plenoptic camera. Instead, with a resampling scheme which helps achieve constant

spacing on each dimension, it dynamically performs demosaicing after integral pro-

jection. Extensive experiments show that this framework could produce photographs

with commercially acceptable resolution.

9.1.2 Angular Resolution

To increase the angular resolution, we have presented a light field triangulation

approach by imposing ray geometry of 3D line segments as constraints. We utilize

CDT and by far our solution is restricted to 3D and pseudo 4D light fields since 4D

CDT is still an open problem in computational geometry.

Improved Light Field Stereo Matching An accurate depth map is crucial in light

field superresolution. To improve current light field stereo matching algorithms, we
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have presented two novel solutions. To resolve the occlusion problems. We apply

an iterative plane sweeping from the closest depth layer to the furthest, so that the

occlusion pixels will be masked out when estimating local minima. We further propose

a global optimization solution and an edge mask solution to avoid trivial solutions on

textureless surfaces.

Based on our ray geometry analysis of 3D lines, we introduce a new F3 energy

term to preserve disparity consistency along line segments in light field stereo matching.

We then modify the binocular stereo graph via the general purpose graph construction

framework and solve it using the extended Quadratic Pseudo-Boolean Optimization al-

gorithm. Experiments show that both our light field triangulation and stereo matching

algorithms outperform state-of-the-art solutions in accuracy and visual quality.

9.1.3 A Unified Spatial-Angular Resolution

To enhance spatial and angular resolution of the light field under a unified frame-

work, we have presented a high-dimensional image based rendering technique which

takes a set of 4D light fields as inputs and produces novel 4D light fields depending

on user defined hyper-geometry proxies in the light field space. Since the input light

fields have denser angular samples, the result light field is no longer restricted by the

angular limitation. Therefore, with this new technique, we can produce novel effects

such as panorama with dynamic DoF, panorama with parallax, and novel views with

larger parallax and shallower DoF.

We have demonstrated the approach for enhancing the light field resolution at

different dimensions. For example, we can create a wide horizontal FoV light field

from a series of light fields captured by rotating the Lytro camera on a tripod. We can

also create an ultra-high spatial resolution light field using an array of Lytro cameras.

The same structure allows us to increase the size of the virtual aperture and hence the

bokeh. Finally, we can increase the parallax between light field views by orbiting the

Lytro camera around the object of interest.
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9.1.4 Temporal Resolution

To improve the temporal resolution of current light field imaging, we have pre-

sented an affordable stereo solution for generating light field and producing high quality

racking focus and tracking focus effects. Specifically, we have constructed a hybrid-

resolution stereo camera system by coupling a high-res/low-res camera pair. We re-

cover a low-res disparity map and subsequently upsample it via fast cross bilateral

filters. We then use the recovered high-resolution disparity map and its corresponding

video frame to synthesize a light field. We implement a GPU-based disparity warp-

ing scheme and exploit atomic operations to resolve visibility. To reduce aliasing, we

present an image-space filtering technique that compensates for spatial undersampling

using mipmapping. Finally, we generate racking focus and tracking focus effects us-

ing light field rendering. Our system shows promising results on indoor and outdoor

scenes.

9.2 Future Work

There are a number of future work I would like to explore.

9.2.1 Spatial Resolution

On the demosaicing front, the resolution enhancement of each plane in the scene

achieved by our algorithm varies according to the depth of the plane. We plan to explore

new light field camera designs that automatically find the best spatial angular tradeoff

on planes of interests based on the scene content analysis such saliency detection.

Moreover, since each microlens is not equivalent to a pinhole, our thin ray

assumption is not ill posed. We plan to further analyze the effect of defocus on the

different planes and how it affects the resolution enhancements.

9.2.2 Angular Resolution

An immediate future direction of our light field triangulation is to experiment

our scheme on irregularly sampled light field, e.g., the ones captured by a catadioptric
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mirror array or by a hand-held camera. Our current super-resolution scheme requires

rasterizing ray simplices into voxels.

An alternative approach is to use a walk-through algorithm that picks one face

of the ray simplex at a time and does the orientation test for locating the simplex, a

process can be accelerated using parallel processing on the graphics hardware. Finally,

the triangulated light field can be potentially compressed via geometric compression.

For example, half-edge collapse operator in progressive meshes can be used to remove

edges and vertices while maintaining a continuous simplex-tiled structure.

9.2.3 A Unified Spatial-Angular Resolution

Our light field quilting algorithm uses the 5D homography to model the warp-

ing between light fields to preserve spatial-angular continuity. An immediate future

direction is to explore the depth based warping to better represent the ray geome-

try. Moreover, thresholds such as k, t, d in our homography estimation are empirically

chosen. We plan to leverage image statistics for automatically assigning those values.

Currently we fix the shutter speed and ISO of the light field camera to match

color between different light fields. In the furture, we also plan to explore the gradient

domain composition on the light field quilting using sparsely sampled light fields as

inputs.

9.2.4 Temporal Resolution

For our stereo based light field acquisition system, we plane to integrating exist-

ing lower cost webcams with realtime lens correction algorithm to further reduce our

form factor. Moreover, most of current disparity estimation algorithms can not handle

transparent objects such as planar glass and hair. We plan to improve the performance

of our disparity estimation algorithm on those regions by proposing a new statistical

model. For example, we could assume each pixel of the captured image may contain

information from multiple depths. In this case, we can separately estimate different

depth values for a single pixel.
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